High pressure is both an environmental challenge to which deep sea biology has to adapt, and a highly sensitive thermodynamic tool that can be used to trigger structural changes in biological molecules and assemblies. Lipid membranes are amongst the most pressure sensitive biological assemblies and pressure can have a large influence on their structure and properties. In this chapter, we will explore the use of high pressure small angle X-ray diffraction and high pressure microscopy to measure and quantify changes in the lateral structure of lipid membranes under both equilibrium high pressure conditions and in response to pressure jumps.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2024.03.019DOI Listing

Publication Analysis

Top Keywords

high pressure
16
lateral structure
8
lipid membranes
8
pressure
7
hydrostatic pressure
4
pressure lipid
4
lipid membrane
4
membrane lateral
4
high
4
structure high
4

Similar Publications

Safe Sexting, Sexual Orientation, and Gender: Risky Sexting in a Community Sample.

Arch Sex Behav

December 2024

Department of Psychology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.

Among young adults, engaging in sexting (i.e., sharing sexually explicit materials of oneself with others) can be a healthy and normative sexual experience.

View Article and Find Full Text PDF

The effect of hot isostatic pressing (HIP) on the thermoelectric power factor of zinc oxide (ZnO) has been examined. ZnO is expected to be a potential n-type oxide thermoelectric material that could enhance the thermoelectric conversion efficiency. The HIP treatment is useful for densifying the material and controlling crystal defects in the material by applying high temperatures and pressures simultaneously.

View Article and Find Full Text PDF

With the accelerated urbanization and economic development in Northwest China, the efficiency of urban wastewater treatment and the importance of water quality management have become increasingly significant. This work aims to explore urban wastewater treatment and carbon reduction mechanisms in Northwest China to alleviate water resource pressure. By utilizing online monitoring data from pilot systems, it conducts an in-depth analysis of the impacts of different wastewater treatment processes on water quality parameters.

View Article and Find Full Text PDF

ICEmST contributes to colonization of Salmonella in the intestine of piglets.

Sci Rep

December 2024

Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.

Salmonella enterica serovar 4,[5],12:i:- sequence type 34 (ST34) has recently become a global concern for public and animal health. The acquisition of mobile genetic element ICEmST, which contains two copper tolerance gene clusters, cus and pco, influences the epidemic success of this clone. Copper is used as a feed additive in swine at levels that potentially lead to selection pressure for Enterobacteriaceae; however, it remains unclear whether the copper tolerance system of ICEmST functions in vivo.

View Article and Find Full Text PDF

The electricity cost burden of durable medical equipment in the United States.

Sci Rep

December 2024

Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, USA.

Those who rely on durable medical equipment (DME) for their health are more likely to be energy insecure and face higher energy burdens than those who do not. In this article, we evaluate the costs of electricity to run DMEs. We find that the average cost across the most common types of high-frequency DMEs-including oxygen concentrators, continuous positive airway pressure machines, and peritoneal kidney dialysis machines-is between $120 and $333 per year, depending on device size and usage frequency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!