Small-angle X-ray and neutron scattering (SAXS/SANS) techniques excel in unveiling intricate details of the internal structure of lipid membranes under physiologically relevant temperature and buffer conditions, all without the need to resort to bulky labels. By concurrently conducting and analyzing neutron and X-ray data, these methods harness the complete spectrum of contrast and resolution from various components constituting lipid membranes. Despite this, the literature exhibits only a sparse presence of applications compared to other techniques in membrane biophysics. This chapter serves as a primer for conducting joint SAXS/SANS analyses on symmetric and asymmetric large unilamellar vesicles, elucidating fundamental elements of the analysis process. Specifically, we introduce the basics of interactions of X-rays and neutrons with matter that lead to the scattering contrast and a description of membrane structure in terms of scattering length density profiles. These profiles allow fitting of the experimentally observed scattering intensity. We further integrate practical insights, unveiling strategies for successful data acquisition and providing a comprehensive assessment of the technique's advantages and drawbacks. By amalgamating theoretical underpinnings with practical considerations, this chapter aims to dismantle barriers hindering the adoption of joint SAXS/SANS approaches, thereby encouraging an influx of studies in this domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2024.02.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!