PTCOG Ocular Statement: Expert Summary of Current Practices and Future Developments in Ocular Proton Therapy.

Int J Radiat Oncol Biol Phys

Proton Ocular Radiation Therapy Program, Department of Radiation Oncology, Osher Center for Integrative Health, Osher Foundation Endowed Chair in Clinical Programs in Integrative Health, University of California San Francisco, San Francisco, California.

Published: December 2024

Although rare cancers, ocular tumors are a threat to vision, quality of life, and potentially life expectancy of a patient. Ocular proton therapy (OPT) is a powerful tool for successfully treating this disease. The Particle Therapy Co-Operative Ocular Group) formulated an Evidence and Expert-Based Executive Summary of Current Practices and Future Developments in OPT: comparative dosimetric and clinical analysis with the different OPT systems is essential to set up planning guidelines, implement best practices, and establish benchmarks for eye preservation, vision, and quality of life measures. Contemporary prospective trials in select subsets of patients (eg, tumors near the optic disc and/or macula) may allow for dosimetric and clinical analysis between different radiation modalities and beamline systems to evaluate differences in radiation delivery and penumbra, and resultant tumor control, normal tissue complication rates, and overall clinical cost-effectiveness. To date, the combination of multimodal imaging (fundus photography, ultrasound, etc), ophthalmologist assessment, and clip surgery with radiation planning have been keys to successful treatment. Increased use of three-dimensional imaging (computed tomography/magnetic resonance imaging) is anticipated although its spatial resolution might be a limiting factor (eg, detection of flat diffuse tumor parts). Commercially produced ocular treatment-planning systems are under development and their future use is expected to expand across OPT centers. Future continuity of OPT will depend on the following: (1) maintaining and upgrading existing older dedicated low-energy facilities, (2) maintaining shared, degraded beamlines at large proton therapy centers, and (3) developing adapted gantry beams of sufficient quality to maintain the clinical benefits of sharp beam conformity. Option (1) potentially offers the sharpest beams, minimizing impact on healthy tissues, whereas (2) and (3) potentially offer the advantage of substantial long-term technical support and development as well as the introduction of new approaches. Significant patient throughputs and close cooperation between medical physics, ophthalmology, and radiation therapy, underpinned by mutual understanding, is crucial for a successful OPT service.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2024.06.017DOI Listing

Publication Analysis

Top Keywords

proton therapy
12
summary current
8
current practices
8
practices future
8
future developments
8
ocular proton
8
vision quality
8
quality life
8
dosimetric clinical
8
clinical analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!