A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transport of protein disulfide isomerase from the endoplasmic reticulum to the extracellular space without passage through the Golgi complex. | LitMetric

Protein disulfide isomerase-A1 (PDIA1) is a master regulator of oxidative protein folding and proteostasis in the endoplasmic reticulum (ER). However, PDIA1 can reach the extracellular space, impacting thrombosis and other pathophysiological phenomena. Whether PDIA1 is externalized via passive release or active secretion is not known. To investigate how PDIA1 negotiates its export, we generated a tagged variant that undergoes N-glycosylation in the ER (Glyco-PDIA1). Addition of N-glycans does not alter its enzymatic functions. Upon either deletion of its KDEL ER-localization motif or silencing of KDEL receptors, Glyco-PDIA1 acquires complex glycans in the Golgi and is secreted. In control cells, however, Glyco-PDIA1 is released with endoglycosidase-H sensitive glycans, implying that it does not follow the classical ER-Golgi route nor does it encounter glycanases in the cytosol. Extracellular Glyco-PDIA1 is more abundant than actin, lactate dehydrogenase, or other proteins released by damaged or dead cells, suggesting active transport through a Golgi-independent route. The strategy we describe herein can be extended to dissect how select ER-residents reach the extracellular space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342103PMC
http://dx.doi.org/10.1016/j.jbc.2024.107536DOI Listing

Publication Analysis

Top Keywords

extracellular space
12
protein disulfide
8
endoplasmic reticulum
8
reach extracellular
8
transport protein
4
disulfide isomerase
4
isomerase endoplasmic
4
extracellular
4
reticulum extracellular
4
space passage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!