A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Validation of an Electronic Health Record-Based Machine Learning Model Compared With Clinical Risk Scores for Gastrointestinal Bleeding. | LitMetric

AI Article Synopsis

  • Guidelines suggest using risk scores to identify very-low-risk patients with gastrointestinal bleeding (GIB) for possible discharge from emergency departments.
  • A new machine learning model was developed and tested against existing scores (Glasgow-Blatchford and Oakland) using data from nearly 3,500 patients across different hospitals.
  • Results showed the machine learning model performed better in predicting very-low-risk patients, successfully identifying a higher percentage compared to the existing risk scores.

Article Abstract

Background & Aims: Guidelines recommend use of risk stratification scores for patients presenting with gastrointestinal bleeding (GIB) to identify very-low-risk patients eligible for discharge from emergency departments. Machine learning models may outperform existing scores and can be integrated within the electronic health record (EHR) to provide real-time risk assessment without manual data entry. We present the first EHR-based machine learning model for GIB.

Methods: The training cohort comprised 2546 patients and internal validation of 850 patients presenting with overt GIB (ie, hematemesis, melena, and hematochezia) to emergency departments of 2 hospitals from 2014 to 2019. External validation was performed on 926 patients presenting to a different hospital with the same EHR from 2014 to 2019. The primary outcome was a composite of red blood cell transfusion, hemostatic intervention (ie, endoscopic, interventional radiologic, or surgical), and 30-day all-cause mortality. We used structured data fields in the EHR, available within 4 hours of presentation, and compared the performance of machine learning models with current guideline-recommended risk scores, Glasgow-Blatchford Score, and Oakland Score. Primary analysis was area under the receiver operating characteristic curve. Secondary analysis was specificity at 99% sensitivity to assess the proportion of patients correctly identified as very low risk.

Results: The machine learning model outperformed the Glasgow-Blatchford Score (area under the receiver operating characteristic curve, 0.92 vs 0.89; P < .001) and Oakland Score (area under the receiver operating characteristic curve, 0.92 vs 0.89; P < .001). At the very-low-risk threshold of 99% sensitivity, the machine learning model identified more very-low-risk patients: 37.9% vs 18.5% for Glasgow-Blatchford Score and 11.7% for Oakland Score (P < .001 for both comparisons).

Conclusions: An EHR-based machine learning model performs better than currently recommended clinical risk scores and identifies more very-low-risk patients eligible for discharge from the emergency department.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493512PMC
http://dx.doi.org/10.1053/j.gastro.2024.06.030DOI Listing

Publication Analysis

Top Keywords

machine learning
28
learning model
20
risk scores
12
patients presenting
12
very-low-risk patients
12
glasgow-blatchford score
12
oakland score
12
area receiver
12
receiver operating
12
operating characteristic
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!