A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Saliva-derived secondary DNA transfer on fabric: The impact of varying conditions. | LitMetric

Saliva-derived secondary DNA transfer on fabric: The impact of varying conditions.

Forensic Sci Int Genet

School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada. Electronic address:

Published: September 2024

This study explored secondary DNA transfer involving saliva, a body fluid often encountered in forensic investigations. Various factors were examined to investigate their potential impact on the transfer of DNA from saliva stains deposited onto common types of fabric (cotton, nylon, and towel). We examined varying types of saliva moisture (wet, dry, and rehydrated) and different types of contact (controlled pressure and active/friction pressure) to quantitatively evaluate how such variables could impact transfer and possible conclusions surrounding saliva-derived DNA deposits. The transfer of DNA was generally least pronounced with more absorbent primary fabrics (cotton and towel materials) while a less absorbent primary fabric (nylon) exhibited a greater propensity for DNA transfer. There were significantly higher amounts of transferred DNA (p < 0.05) observed in wet saliva samples compared to dry and rehydrated saliva samples. Further, the use of active pressure (friction) appeared to result in more DNA transfer overall as compared to controlled pressure contact. Experiments conducted with wet saliva and active pressure (friction) demonstrated the highest likelihood of transfer, with the primary nylon and secondary towel fabric combination demonstrating the greatest average transfer percentage of 94.74 %. The variables explored in this study presented multiple combinations wherein a sufficient amount of DNA (≥ 240 pg total) was transferred to the secondary fabric, making it potentially suitable for STR-PCR amplification in our laboratory. The findings from this study indicate that the type of primary fabric receiving the saliva deposit, the type of saliva moisture, the type of secondary fabric and its moisture type, and the type of contact all have the potential to affect the quantity of DNA transferred and recovered. This study provides empirical data on the ease, and to what extent, DNA from saliva transfers between fabrics and aids DNA activity level evaluations. The significance of this research lies in its contribution to expanding our current understanding of DNA transfer involving saliva within forensic science and criminal investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsigen.2024.103092DOI Listing

Publication Analysis

Top Keywords

dna transfer
20
dna
13
transfer
10
saliva
10
secondary dna
8
transfer involving
8
involving saliva
8
impact transfer
8
transfer dna
8
dna saliva
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!