The discovery of an inhibitor for acyl-CoA synthetase long-chain family member 4 (ACSL4), a protein involved in the process of cell injury through ferroptosis, has the potential to ameliorate cell damage. In this study, we aimed to investigate the potential of berberine (BBR) as an inhibitor of ACSL4 in order to suppress endothelial ferroptosis and provide protection against atherosclerosis. An atherosclerosis model was created in ApoE mice by feeding a high fat diet for 16 weeks. Additionally, a mouse model with endothelium-specific overexpression of ACSL4 was established. BBR was administered orally to assess its potential therapeutic effects on atherosclerosis. Human umbilical vein endothelial cells (HUVECs) were exposed to oxidized low density lipoprotein (ox-LDL) to simulate atherosclerotic endothelial damage in vitro. The interaction between ACSL4 and BBR has been confirmed, with BBR playing a role in inhibiting erastin-induced ferroptosis by regulating ACSL4. Additionally, BBR has been found to inhibit lipid deposition, plaque formation, and collagen deposition in the aorta, thereby delaying the progression of atherosclerosis. It also restored the abnormal expression of ferroptosis-related proteins in atherosclerotic vascular endothelial cells both in vivo and in vitro. In conclusion, BBR, acting as an ACSL4 inhibitor, can improve atherosclerosis by inhibiting ferroptosis in endothelial cells. This highlights the potential of targeted inhibition of vascular endothelial ACSL4 as a strategy for treating atherosclerosis, with BBR being a candidate for this purpose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2024.117081 | DOI Listing |
Dev Cell
January 2025
Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA. Electronic address:
Understanding the impact of senescence on disease is limited by the lack of tools to lineage label senescent cells. In a recent Cell issue, Zhao et al. create mouse models to genetically manipulate and trace p16 cells, identifying contrasting roles for senescent macrophages and endothelial cells (ECs) in liver fibrosis.
View Article and Find Full Text PDFJ Adv Res
January 2025
Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022 People's Republic of China. Electronic address:
Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.
Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.
J Hazard Mater
January 2025
Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China. Electronic address:
6:2 Chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA; trade name F-53B) is an alternative to perfluorooctane sulfonate (PFOS) and is widely detected in various environmental media and biological samples. Polystyrene nanoplastics (PS-NPs) have become a significant pollutant in the global environment. However, the comprehensive effects of both on the vascular system of mammals are still unclear.
View Article and Find Full Text PDFMedComm (2020)
January 2025
Department of Oncology Shanghai Medical College, Fudan University Shanghai China.
Cancer-associated fibroblasts (CAFs) are intrinsic components of the tumor microenvironment that promote cancer progression and metastasis. Through an unbiased integrated analysis of gastric tumor grade and stage, we identified a subset of proangiogenic CAFs characterized by high podoplanin (PDPN) expression, which are significantly enriched in metastatic lesions and secrete chemokine (CC-motif) ligand 2 (CCL2). Mechanistically, PDPN(+) CAFs enhance angiogenesis by activating the AKT/NF-κB signaling pathway.
View Article and Find Full Text PDFUltraviolet (UV)-induced DNA mutations produce genetic drivers of cutaneous melanoma initiation and numerous neoantigens that can trigger anti-tumor immune responses in the host. Consequently, melanoma cells must rapidly evolve to evade immune detection by simultaneously modulating cell-autonomous epigenetic mechanisms and tumor-microenvironment interactions. Angiogenesis has been implicated in this process; although an increase of vasculature initiates the immune response in normal tissue, solid tumors manage to somehow enhance blood flow while preventing immune cell infiltration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!