A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Error analysis of self-compensated ultrasound measurements of the thickness loss due to corrosion in pipe walls. | LitMetric

Error analysis of self-compensated ultrasound measurements of the thickness loss due to corrosion in pipe walls.

Ultrasonics

Department of Mechatronics and Mechanical Systems, Engineering - Escola Politécnica da Universidade de São Paulo, Brazil. Electronic address:

Published: August 2024

The ultrasonic pulse-echo technique is widely employed to measure the wall thickness reduction due to corrosion in pipelines. Ultrasonic monitoring is noninvasive and can be performed online to evaluate the structural health of pipelines. Although ultrasound is a robust technique, it presents two main difficulties arising from the temperature variation in the medium being monitored: the mechanical assembly must have high stability and the ultrasonic propagation velocity must take into account the temperature variation. In this paper, a detailed strategy is presented to compensate for changes in the propagation velocity whenever the temperature changes. The method is considered self-compensated because the calibration data is obtained from the ultrasonic signals captured using the pipe under evaluation. The analysis of systematic errors in the temperature compensation is presented, first considering that a reference initial pipe thickness is given, and second when a reference sound velocity is given. The technique was evaluated under laboratory conditions using a closed loop with accelerated corrosion through the use of continuous flow saline water containing sand. In this test, the ultrasonic results were compared with the traditional coupon method used to determine corrosion loss. The results show that the self-compensated method was able to compensate for temperature fluctuations, and the total thickness loss measured by the ultrasound technique was close to the value measured by the coupons. Finally, the measurement system was tested in a production pipeline exposed to sunlight. The results show that the self-compensated method can reduce the oscillations in the thickness loss readings, caused by temperature swings, but large temperature variations cannot be completely compensated for. This experiment also shows the effects of low mechanical stability, which caused completely invalid results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2024.107387DOI Listing

Publication Analysis

Top Keywords

thickness loss
12
temperature variation
8
propagation velocity
8
self-compensated method
8
temperature
7
thickness
5
ultrasonic
5
error analysis
4
self-compensated
4
analysis self-compensated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!