Amidst the rapid advancement of Internet of Things (IoT) technology and the burgeoning field of Multimodal Learning Analytics (MMLA), this study employs spatial positioning technology as a case study to investigate the potential of multimodal data in assessing children's social development. This study combines the spatial positioning data of preschool children collected during free play sessions in natural educational settings and the spatial metrics constructed based on observational studies to establish and validate a sociometric status Decision Tree classification model. The findings suggest that the model can overall accurately identify children with three distinct sociometric statuses, albeit with some variability in efficacy across different sociometric groups and age groups. Notably, the model demonstrates a high hitting rate in identifying the potentially neglected children, providing valuable support for educators in understanding and fostering children's developmental needs. This study also highlights the advantages of emerging technology and multimodal data application in child development assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actpsy.2024.104389 | DOI Listing |
Exp Brain Res
January 2025
Institute for Experimental Psychology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
When we touch ourselves, the pressure appears weaker compared to when someone else touches us, an effect known as sensory attenuation. Sensory attenuation is spatially tuned and does only occur if the positions of the touching and the touched body-party spatially coincide. Here, we ask about the contribution of visual or proprioceptive signals to determine self-touch.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Computer Science, Xi'an Polytechnic University, Xi'an 710600, China.
Interacting hand reconstruction presents significant opportunities in various applications. However, it currently faces challenges such as the difficulty in distinguishing the features of both hands, misalignment of hand meshes with input images, and modeling the complex spatial relationships between interacting hands. In this paper, we propose a multilevel feature fusion interactive network for hand reconstruction (HandFI).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Master's Program in Information and Computer Science, Doshisha University, Kyoto 610-0394, Japan.
The semantic segmentation of bone structures demands pixel-level classification accuracy to create reliable bone models for diagnosis. While Convolutional Neural Networks (CNNs) are commonly used for segmentation, they often struggle with complex shapes due to their focus on texture features and limited ability to incorporate positional information. As orthopedic surgery increasingly requires precise automatic diagnosis, we explored SegFormer, an enhanced Vision Transformer model that better handles spatial awareness in segmentation tasks.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy.
: Gait analysis, traditionally performed with lab-based optical motion capture systems, offers high accuracy but is costly and impractical for real-world use. Wearable technologies, especially inertial measurement units (IMUs), enable portable and accessible assessments outside the lab, though challenges with sensor placement, signal selection, and algorithm design can affect accuracy. This systematic review aims to bridge the benchmarking gap between IMU-based and traditional systems, validating the use of wearable inertial systems for gait analysis.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100107, China.
The forest musk deer () and Siberian roe deer () are browsers with a broad sympatric distribution in North and Southwest China. However, little is known about their spatial utilization of microhabitats and habitats. This study, conducted on Huanglong Mountain in China, analyzed the defecation site distribution, indicating preferences of forest musk deer and Siberian roe deer for their habitat demands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!