Rapidly evolving taxa are excellent models for understanding the mechanisms that give rise to biodiversity. However, developing an accurate historical framework for comparative analysis of such lineages remains a challenge due to ubiquitous incomplete lineage sorting (ILS) and introgression. Here, we use a whole-genome alignment, multiple locus-sampling strategies, and summary-tree and single nucleotide polymorphism-based species-tree methods to infer a species tree for eastern North American Neodiprion species, a clade of pine-feeding sawflies (Order: Hymenopteran; Family: Diprionidae). We recovered a well-supported species tree that-except for three uncertain relationships-was robust to different strategies for analyzing whole-genome data. Nevertheless, underlying gene-tree discordance was high. To understand this genealogical variation, we used multiple linear regression to model site concordance factors estimated in 50-kb windows as a function of several genomic predictor variables. We found that site concordance factors tended to be higher in regions of the genome with more parsimony-informative sites, fewer singletons, less missing data, lower GC content, more genes, lower recombination rates, and lower D-statistics (less introgression). Together, these results suggest that ILS, introgression, and genotyping error all shape the genomic landscape of gene-tree discordance in Neodiprion. More generally, our findings demonstrate how combining phylogenomic analysis with knowledge of local genomic features can reveal mechanisms that produce topological heterogeneity across genomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/sysbio/syae036 | DOI Listing |
Mol Phylogenet Evol
February 2025
Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands; Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands. Electronic address:
Resolving the order of speciation events that occurred in rapid succession is inherently hard and typically requires a phylogenomic approach. A case in point concerns the previously unresolved phylogeny of the three species of banded newt (genus Ommatotriton). We obtain c.
View Article and Find Full Text PDFMol Phylogenet Evol
January 2025
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, RJ, Brazil.
Eperua is a genus of Neotropical trees that forms a major component of tropical lowland forests in Amazonia, especially in the Guiana Shield and on white-sand forests. One species occurs in the Cerrado-Caatinga ecotone, and the genus also inhabits riverine and terra firme forests. Species in Eperua exhibit one of two drastically different floral architectures and inflorescence types, each associated with distinct pollinators.
View Article and Find Full Text PDFSyst Biol
November 2024
GeoBio-Center, Ludwig-Maximilians-Universität Mu¨nchen, 80333 Munich, Germany.
BMC Ecol Evol
November 2024
Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.
A terrace in a phylogenetic tree space is a region where all trees contain the same set of subtrees, due to certain patterns of missing data among the taxa sampled, resulting in an identical optimality score for a given data set. This was first investigated in the context of phylogenetic tree estimation from sequence alignments using maximum likelihood (ML) and maximum parsimony (MP). It was later extended to the species tree inference problem from a collection of gene trees, where a set of equally optimal species trees was referred to as a "pseudo" species tree terrace which does not consider the topological proximity of the trees in terms of the induced subtrees resulting from certain patterns of missing data.
View Article and Find Full Text PDFMol Phylogenet Evol
January 2025
Laboratoire d'Écologie Alpine, Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, 38058 Grenoble cedex 9, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!