Unsaturated porous media, characterized by the combined presence of several immiscible fluid phases in the pore space, are highly relevant systems in nature, because they control the fate of contaminants and the availability of nutrients in the subsoil. However, a full understanding of the mechanisms controlling solute mixing in such systems is still missing. In particular, the role of saturation in the development of chaotic solute mixing has remained unexplored. Using three-dimensional numerical simulations of flow and transport at the pore scale, built upon X-ray tomograms of a porous medium at different degrees of liquid (wetting)-phase saturation, we show the occurrence of chaotic dynamics in both the deformation of the solute plume, as characterized by computed chaos metrics (Lyapunov exponents), and the mixing of the injected solute. Our results show an enhancement of these chaotic dynamics at lower saturation and their occurrence even under diffusion-relevant conditions over the medium's length, also being strengthened by larger flow velocities. These findings highlight the dominant role of the pore-scale spatial heterogeneity of the system, enhanced by the presence of an immiscible phase (e.g., air), on the mixing efficiency. This represents a stepping stone for the assessment of mixing and reactions in unsaturated porous media.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c02799DOI Listing

Publication Analysis

Top Keywords

unsaturated porous
12
porous media
12
presence immiscible
8
solute mixing
8
saturation occurrence
8
chaotic dynamics
8
mixing
5
chaotic
4
chaotic transport
4
transport solutes
4

Similar Publications

Prussian blue analogs (PBAs), as a classical kind of microporous materials, have attracted substantial interests considering their well-defined framework structures, unique physicochemical properties and low cost. However, PBAs typically adopt cubic structure that features small pore size and low specific surface area, which greatly limits their practical applications in various fields ranging from gas adsorption/separation to energy conversion/storage and biomedical treatments. Here we report the facile and general synthesis of unconventional hexagonal open PBA structures.

View Article and Find Full Text PDF

Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal-organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF).

View Article and Find Full Text PDF

Porous coordination cages (PCCs), molecular analogs of metal-organic frameworks, offer modular platforms for studying the adsorption properties of small molecules, with coordinatively unsaturated metal centers playing a pivotal role in tuning these behaviors. In this work, we present the synthesis, activation, and detailed gas adsorption studies of second-row transition metal-based ML cuboctahedral cages, specifically Mo(bdc), Rh(bdc), and [Ru(bdc)]Cl. These materials represent rare examples of Mo-, Rh-, and Ru-based hybrid porous solids.

View Article and Find Full Text PDF

Pomegranate seed oil (PSO) is highly valued in the functional food industry due to its rich fatty acid content and associated health benefits. However, its high degree of unsaturation makes it susceptible to rapid degradation when exposed to oxygen and light. This study investigates the encapsulation of PSO at 15% w/w using different blends of gum Arabic (GA) and maltodextrin (MD) (1:0, 0:1, 1:1, 3:1, and 1:3) to determine optimal formulations for enhanced stability and functional quality.

View Article and Find Full Text PDF

Experimental investigation on heat and moisture transfer of propylene glycol-mixed steam in porous media.

J Contam Hydrol

January 2025

State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China.. Electronic address:

Propylene glycol (PG)-mixed steam enhanced extraction is a promising remediation technique for removing semi-volatile organic compounds (SVOCs) from the unsaturated zone. However, the mechanisms of heat and moisture transfer during PG-mixed steam injection remain unclear. In this study, a 2D experimental system was developed to enable non-invasive monitoring of the spatio-temporal distribution of temperature and degree of saturation during steam injection into porous media.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!