Population genetic structure of arthropod disease vectors provides important information on vector movement and climate or other environmental variables that influence their distribution. This information is critical for data-driven vector control. In the first comprehensive study of the genetic structure of T. dimidiata s.l. (Latreille, 1811) we focus on an area of active transmission designated as a top priority for control. We examined a high number of specimens across a broad geographic area along the border of Guatemala and El Salvador including multiple spatial scales using a high number of genome-wide markers. Measuring admixture, pairwise genetic differentiation, and relatedness, we estimated the specimens represented three genetic clusters. We found evidence of movement (migration/gene flow) across all spatial scales with more admixture among locations in El Salvador than in Guatemala. Although there was significant isolation by distance, the 2 close villages in Guatemala showed either the most or least genetic variation indicating an additional role of environmental variables. Further, we found that social factors may be influencing the genetic structure. We demonstrated the power of genomic studies with a large number of specimens across a broad geographic area. The results suggest that for effective vector control movement must be considered on multiple spatial scales along with its contributing factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jme/tjae066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!