Background: Chronic obstructive pulmonary disease (COPD) is a familiar disease, and owns high morbidity and mortality, which critically damages the health of patients. Ubiquitin-specific peptidase 8 (USP8) is a pivotal protein to join in the regulation of some diseases. In a previous report, it was determined that USP8 expression is down-regulated in LPS-treated BEAS-2B cells, and USP8 restrains inflammatory response and accelerates cell viability. However, the regulatory roles of USP8 on ferroptosis in COPD are rarely reported, and the associated molecular mechanisms keep vague.

Objective: To investigate the regulatory functions of USP8 in COPD progression.

Material And Methods: The lung functions were measured through the Buxco Fine Pointe Series Whole Body Plethysmography (WBP). The Fe level was tested through the Fe assay kit. The protein expressions were assessed through western blot. The levels of tumor necrosis -factor-α, interleukin 6, and interleukin 8 were evaluated through enzyme-linked immunosorbent serologic assay. Cell viability was tested through CCK-8 assay.

Results: In this work, it was discovered that overexpression of USP8 improved lung function in COPD mice. In addition, overexpression of USP8 repressed ferroptosis by regulating glutathione peroxidase 4 and acyl-CoA synthetase long-chain family 4 expressions in COPD mice. Overexpression of USP8 suppressed inflammation in COPD mice. Furthermore, overexpression of USP8 suppressed ferroptosis in COPD cell model. At last, it was verified that overexpression of USP8 accelerated ubiquitin aldehyde-binding protein 1 (OTUB1)/solute carrier family 7 member 11 (SLC7A11) pathway.

Conclusion: This study manifested that overexpression of USP8 restrained inflammation and ferroptosis in COPD by regulating the OTUB1/SLC7A11 signaling pathway. This discovery hinted that USP8 could be a potential target for COPD treatment.

Download full-text PDF

Source
http://dx.doi.org/10.15586/aei.v52i4.1108DOI Listing

Publication Analysis

Top Keywords

overexpression usp8
28
usp8
12
ferroptosis copd
12
copd mice
12
copd
9
inflammation ferroptosis
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
regulating otub1/slc7a11
8

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) is a lethal malignancy, and the molecular underpinnings of its aggressive behavior are not fully understood. FYN proto-oncogene, Src family tyrosine kinase (FYN) has been linked to cancer progression, yet its role in ESCC remains elusive. This study investigated the influence of FYN on ESCC malignancy.

View Article and Find Full Text PDF

Background: Universal stress proteins (USPs) are prevalent in various bacteria to cope with different adverse stresses, while their possible effects on secondary metabolisms of hosts are unclear. Tiancimycins (TNMs) are ten-membered endiynes possessing excellent potential for development of anticancer antibody-drug conjugates. During our efforts to improve TNMs titer, a high-producing strain Streptomyces sp.

View Article and Find Full Text PDF

Background: Protein tyrosine kinase 7 (PTK7) has been found to be highly expressed in non-small cell lung cancer (NSCLC), but its specific molecular mechanism needs to be further explored.

Methods: PTK7 mRNA expression in NSCLC tumor tissues was examined by quantitative real-time PCR. The protein levels of PTK7, ubiquitin-specific peptidase 8 (USP8), PIK3CB, and PI3K/AKT were determined by western blot.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is an important RNA virus that has caused huge economic losses to swine industry in the whole world. Ubiquitin specific protease 8 (USP8), a pivotal regulator of protein degradation, intricately contributes to orchestrating the delicate balance of various biological processes through its deubiquitinating activity. However, the role of USP8 in antiviral immune response to PRRSV remains elusive.

View Article and Find Full Text PDF

Recently, FN1 fusions to receptor tyrosine kinase genes have been identified in soft tissue tumors with calcified chondroid matrix named calcifying chondroid mesenchymal neoplasms (CCMNs). We collected 33 cases of CCMN from the French network for soft tissue and bone tumors. We performed whole-exome RNA sequencing, expression analysis, and genome-wide DNA methylation profiling in 33, 30, and 20 cases of CCMN compared with a control group of tumors, including noncalcified tenosynovial giant cell tumor (TGCT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!