Oseltamivir phosphate (OP) is an antiviral drug with potential risks to human health due to overuse, leading to serious consequences such as gastrointestinal disturbances, abnormal neuropsychiatric symptoms, and sudden death. Therefore, gaining an in-depth understanding of its interaction with proteins is crucial. We investigated the interaction between OP and bovine serum albumin (BSA) utilizing multispectral methods (i.e., fluorescence, ultraviolet absorption, circular dichroism) combined with molecular docking techniques. Fluorescence spectroscopy indicated that OP quenched BSA fluorescence by forming the OP-BSA complex. The Stern-Volmer constants (K) between OP and BSA were determined to be 3.06 × 10 L/mol, 2.36 × 10 L/mol, and 1.86 × 10 L/mol at 293 K, 298 K, and 303 K, respectively. OP occupies exclusively one binding site on BSA, and the fluorescent probe displacement measurements revealed that this is BSA site I. Thermodynamic data (∆H, ∆S, and ∆G) obtained by fitting the van't Hoff equation were - 77.49 kJ/mol, -176.54 J/(mol∙K), and - 24.88 kJ/mol, respectively, suggesting that hydrogen bonding and van der Waals forces mainly participate in OP-BSA complex stabilization. Moreover, the reaction occurs spontaneously at room temperature. Synchronous fluorescence spectra indicated that OP interacts with tryptophan residue of BSA. The results of ultraviolet (UV) and 3D fluorescence spectroscopy indicated that the OP-BSA complex formation altered the microenvironment around amino acid residues. Circular dichroism spectra revealed that the addition of OP decreased the α-helix content of BSA by 7.13%. Docking analysis confirmed that OP binds to BSA site I through hydrogen bonding with amino acids VAL342, SER453, and ASP450. Finally, ADMET studies were conducted to explore the pharmacokinetics of OP as an antiviral drug.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227190 | PMC |
http://dx.doi.org/10.1186/s13065-024-01232-0 | DOI Listing |
BMC Chem
July 2024
School of Physical Science & Technology, Guangxi University, Nanning, 530004, China.
Oseltamivir phosphate (OP) is an antiviral drug with potential risks to human health due to overuse, leading to serious consequences such as gastrointestinal disturbances, abnormal neuropsychiatric symptoms, and sudden death. Therefore, gaining an in-depth understanding of its interaction with proteins is crucial. We investigated the interaction between OP and bovine serum albumin (BSA) utilizing multispectral methods (i.
View Article and Find Full Text PDFJ Biomol Struct Dyn
March 2021
Department of Chemistry, Indian Institute of Technology Jodhpur, Jheepasani, India.
analysis of the interaction of organophosphate pesticides (OP) with bovine serum albumin (BSA) is crucial to understand their potential effects at the molecular level. In this context, we have employed Saturation Transfer Difference (STD) NMR experiments in conjunction with molecular docking studies to unravel the binding interaction of the OP chlorpyrifos (CPF), diazinon (DZN) and parathion (PA) in solution. The relative STD (%) suggested the detailed epitope mapping of these OP with BSA while the concentration-dependent STD NMR studies were performed to obtain the complex dissociation constant (K) of the OP-BSA complexes; K=1.
View Article and Find Full Text PDFJ Photochem Photobiol B
February 2013
Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran, Iran.
Oseltamivir phosphate (Tamiflu) is a pro-drug that is metabolized to its active form (Oseltamivir carboxylate), after oral administration. OC inhibits influenza A and B neuraminidases in vitro and OP inhibits influenza virus infection and replication in vitro. Serum albumin is the most abundant of the proteins in the circulatory system of a wide variety of organisms and plays an important role in the transport and deposition of many drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!