Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The occurrence, development, and outbreak of tea diseases and pests pose a significant challenge to the quality and yield of tea, necessitating prompt identification and control measures. Given the vast array of tea diseases and pests, coupled with the intricacies of the tea planting environment, accurate and rapid diagnosis remains elusive. In addressing this issue, the present study investigates the utilization of transfer learning convolution neural networks for the identification of tea diseases and pests. Our objective is to facilitate the accurate and expeditious detection of diseases and pests affecting the Yunnan Big leaf kind of tea within its complex ecological niche.
Results: Initially, we gathered 1878 image data encompassing 10 prevalent types of tea diseases and pests from complex environments within tea plantations, compiling a comprehensive dataset. Additionally, we employed data augmentation techniques to enrich the sample diversity. Leveraging the ImageNet pre-trained model, we conducted a comprehensive evaluation and identified the Xception architecture as the most effective model. Notably, the integration of an attention mechanism within the Xeption model did not yield improvements in recognition performance. Subsequently, through transfer learning and the freezing core strategy, we achieved a test accuracy rate of 98.58% and a verification accuracy rate of 98.2310%.
Conclusions: These outcomes signify a significant stride towards accurate and timely detection, holding promise for enhancing the sustainability and productivity of Yunnan tea. Our findings provide a theoretical foundation and technical guidance for the development of online detection technologies for tea diseases and pests in Yunnan.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229499 | PMC |
http://dx.doi.org/10.1186/s13007-024-01219-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!