Iron (Fe) is fundamental to life on earth. In the human body, it is both essential and harmful if above threshold. A similar balance applies to other elements: calcium (Ca), magnesium (Mg), and trace elements including copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), mercury (Hg), and nickel (Ni). These elements share some proteins involved in the absorption and transport of Fe. Cu and Cd can inhibit Fe absorption, while excess of Fe may antagonize Cu metabolism and reduce ceruloplasmin (Cp). Excessive Fe can hinder Zn absorption and transferrin (Trf) can bind to both Zn and Ni. Ca is able to inhibit the divalent metal transporter 1 (DMT1) in a dose-dependent manner to reduce Fe absorption and low Mg concentrations can exacerbate Fe deficiency. Pb competitively inhibits Fe distribution and elevated Cd absorption reduces Fe uptake. Exposure to Hg is associated with higher ferritin concentrations and Ni alters intracellular Fe metabolism. Fe removal by phlebotomy in hemochromatosis patients has shown to increase the levels of Cd and Pb and alter the concentrations of trace elements in some types of anemia. Yet, the effects of chronic exposure of most trace elements remain poorly understood.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-024-04289-zDOI Listing

Publication Analysis

Top Keywords

trace elements
16
calcium magnesium
8
magnesium trace
8
elements
6
absorption
5
iron metabolism
4
metabolism calcium
4
trace
4
elements review
4
review iron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!