The evaluation and monitoring of sites contaminated with heavy metals are essential for pollution remediation and prevention. In this study, we conducted geophysical and geochemical investigations at a site exhibiting heavy metal contamination downstream from an abandoned mine, with the aim of analyzing the extent of contamination and its temporal variation. We employed geophysical survey methods including electrical resistivity and induced polarization surveys of areas contaminated with heavy metals. Repeated surveys were conducted over time using the electrical resistivity method. Numerical simulations were employed to mitigate and eliminate electrical noise stemming from topography on the site. Additionally, time-lapse inversion was conducted on the resistivity data sets to analyze the changes in resistivity caused by variations in heavy metal contaminants. In the geochemical survey, soil samples were collected from the same locations as the geophysical survey, and chemical properties including pH, water content, electrical conductivity, and cation exchange capacity were analyzed. Our results showed that with the reduction of major sources of As and Zn contamination by 50%, the time-lapse electrical resistivity inversion results indicated that the resistivity of the subsurface materials increased by a factor of two. This paper demonstrated the natural reduction of the heavy metal contaminants at the site due to rainfall, aiming to comprehensively analyze the resultant alteration of both geochemical and geophysical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-34008-z | DOI Listing |
Appl Microbiol Biotechnol
January 2025
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
Unlabelled: This study aimed to evaluate gold nanoparticles (GNPs) and photobiomodulation (PBM), associated with antibothropic serum (AS), to treat a muscle lesion induced by Bothrops jararaca venom.
Methods: 108 Swiss male mice were used, divided into nine groups (n = 12) with different combinations of treatments. Animals were inoculated with 250 µg of B.
Biol Trace Elem Res
January 2025
Jiyuan Ecological and Environmental Monitoring Center of Henan Province, Jiyuan, 459000, Henan, China.
The effect of heavy metal availability and interaction in feed on feces heavy metal excretion in mice has rarely been investigated. In this work, feed containing a polluted soil (total Cd = 6.34, total Pb = 387 mg kg) amended with phosphate, bentonite and lime, or feed spiked with soluble Pb and Cd were fed to mice for 10 days.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.
View Article and Find Full Text PDF<b>Background and Objective:</b> Cadmium (Cd) is one of the heavy metal pollutants and its accumulation impacts the sustainability of marine organisms. Current research aimed to isolate and identify the cadmium-reducing bacteria from contaminated coastal sediment in Karangsong Port, Indramayu, Indonesia. The isolates were investigated for their potential to reduce cadmium and showed the cadmium reduction drastically up to 50% at 6 hrs treated under different cadmium concentrations of 0, 5, 1 and 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!