The optoelectronic and structural characteristics of the ZnCrSe (0 ≤ x ≤ 1) semiconductor are reported by employing density functional theory (DFT) within the mBJ potential. The findings revealed that the lattice constant decreases with increasing Cr concentration, although the bulk modulus exhibits the opposite trend. ZnSe is a direct bandgap material; however, a change from direct to indirect electronic bandgap has been seen with Cr presence. This transition is caused by structural alterations by Cr and defects forming, which results in novel optical features, including electronic transitions. The electronic bandgap decreases from 2.769 to 0.216 eV, allowing phonons to participate and improving optical absorption. A higher concentration of Cr boosts infrared absorption and these Cr-based ZnSe (ZnCrSe) semiconductors also cover a wider spectrum in the visible range from red to blue light. Important optical parameters such as reflectance, optical conductivity, optical bandgap, extinction coefficient, refractive index, magnetization factor, and energy loss function are discussed, providing a theoretical understanding of the diverse applications of ZnCrSe semiconductors in photonic and optoelectronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226455PMC
http://dx.doi.org/10.1038/s41598-024-66378-2DOI Listing

Publication Analysis

Top Keywords

electronic bandgap
8
zncrse semiconductors
8
optical
5
investigating structural
4
structural optoelectronic
4
optoelectronic properties
4
properties cr-substituted
4
cr-substituted znse
4
znse semiconductors
4
semiconductors optoelectronic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!