AI Article Synopsis

  • X-linked retinitis pigmentosa (XLRP) causes progressive vision loss primarily in males, with carrier females exhibiting a range of severities; about 70% of cases are linked to mutations in the RPGR gene.
  • The terminal exon ORF15 of the RPGR gene is challenging to sequence due to its repetitive nature, complicating molecular diagnostics.
  • A recent study validates a long-read sequencing method that improved detection rates of ORF15 variations to nearly 100% after additional visual inspection, suggesting this approach should be the first screening choice for XLRP cases.

Article Abstract

X-linked retinitis pigmentosa (XLRP) is characterized by progressive vision loss leading to legal blindness in males and a broad severity spectrum in carrier females. Pathogenic alterations of the retinitis pigmentosa GTPase regulator gene (RPGR) are responsible for over 70% of XLRP cases. In the retina, the RPGR transcript includes a terminal exon, called ORF15, that is altered in the large majority of RPGR-XLRP cases. Unfortunately, due to its highly repetitive sequence, ORF15 represents a considerable challenge in terms of sequencing for molecular diagnostic laboratories. However, in a recent preliminary work Yahya et al. reported a long-read sequencing approach seeming promising. Here, the aim of the study was to validate and integrate this new sequencing strategy in a routine screening workflow. For that purpose, we performed a masked test on 52 genomic DNA samples from male and female individuals carrying 32 different pathogenic ORF15 variations including 20 located in the highly repetitive region of the exon. For the latter, we have obtained a detection rate of 80-85% in males and 60-80% in females after bioinformatic analyses. These numbers raised to 100% for both status after adding a complementary visual inspection of ORF15 long-reads. In accordance with these results, and considering the frequency of ORF15 pathogenic variations in XLRP, we suggest that a long-read screening of ORF15 should be systematically considered before any other sequencing approach in subjects with a diagnosis compatible with XLRP.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-024-01649-0DOI Listing

Publication Analysis

Top Keywords

retinitis pigmentosa
12
long-read sequencing
8
x-linked retinitis
8
highly repetitive
8
sequencing approach
8
orf15
7
sequencing
5
validation nanopore
4
nanopore long-read
4
sequencing resolve
4

Similar Publications

Microglia are highly specialized resident macrophages in the central nervous system that play a pivotal role in modulating neuroinflammation. Microglial plasticity is essential for their function, allowing them to polarize into proinflammatory M1-like or anti-inflammatory M2-like phenotypes. However, the mechanisms driving M1 and M2 microglial induction during retinal degeneration remain largely unexplored.

View Article and Find Full Text PDF

In vivo adenine base editing ameliorates Rho-associated autosomal dominant retinitis pigmentosa.

J Genet Genomics

December 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China. Electronic address:

Mutations in the Rhodopsin (RHO) gene are the main cause of autosomal dominant retinitis pigmentosa (adRP), 84% of which are pathogenic gain-of-function point mutations. Treatment strategies for adRP typically involve silencing or ablating the pathogenic allele, while normal RHO protein replacement has no meaningful therapeutic benefit. Here, we present an adenine base editor (ABE)-mediated therapeutic approach for adRP caused by RHO point mutations in vivo.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Cortex Dictamni (CD) is the dried root skin of Dictamnus dasycarpus Turcz, widely used in the field of traditional Chinese medicine. Recent adverse reactions to CD limited the clinical application in combination with other traditional Chinese medicines.

Aim Of The Study: To investigate the retinitis pigmentosa (RP) effects of CD using the zebrafish model and elucidate the underlying molecular mechanism of CD-induced RP in zebrafish.

View Article and Find Full Text PDF

Perspectives of traditional herbal medicines in treating retinitis pigmentosa.

Front Med (Lausanne)

December 2024

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.

Medicinal plants, also known as herbs, have been discovered and utilized in traditional medical practice since prehistoric times. Medicinal plants have been proven rich in thousands of natural products that hold great potential for the development of new drugs. Previously, we reviewed the types of Chinese traditional medicines that a Tang Dynasty monk Jianzhen (Japanese: Ganjin) brought to Japan from China in 742.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) is a class of inherited retinal dystrophies (IRDs) that involves the degeneration of retinal photoreceptor cells and results in progressive vision loss. It was identified and named in 1857. For over 100 years, treatment of RP was generally limited to modifications in diet, management of cystoid macular edema, and supportive care for low vision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!