Relatively low levels of antioxidant enzymes coupled with high oxygen metabolism result in the formation of numerous oxidative DNA damages in the tissues of the central nervous system. Recently, kynurenic acid (KYNA), knowns for its neuroprotective properties, has gained increasing attention in this context. Therefore, our hypothesis assumed that increased KYNA levels in the brain would positively influence mRNA expression of selected enzymes of the base excision repair pathway as well as enhance their efficiency in excising damaged nucleobases in specific areas of the sheep brain. The study was conducted on adult anestrous sheep (n = 18), in which two different doses of KYNA (20 and 100 μg/day) were infused into the third brain ventricle for three days. Molecular and biochemical analysis included the hypothalamus (preoptic and mediol-basal areas), hippocampus (CA3 field) and amygdala (central amygdaloid nucleus), dissected from the brain of sheep euthanized immediately after the last infusion. The results revealed a significant increase P < 0.001) in the relative mRNA abundance of N-methylpurine DNA glycosylase (MPG) following administration of both dose of KYNA across all examined tissues. The transcription of thymine-DNA glycosylase (TDG) increased significantly (P < 0.001) in all tissues in response to the lower KYNA dose compared to the control group. Moreover, 8-oxoguanine (8-oxoG) DNA glycosylase (OGG1) mRNA levels were also higher in both animal groups (P < 0.001). In addition, in the hypothalamus, hippocampus and amygdala, AP endonuclease 1 (APE1) mRNA expression increased under both doses of KYNA. Moreover, the both dose of KYNA significantly stimulated the efficiency of 8-oxoG excision in hypothalamus and amygdala (P < 0.05-0.001). The lower and higher doses of KYNA significantly influenced the effectiveness of εA and εC in all structures (P < 0.01-0.001). In conclusion, the favorable effect of KYNA in the brain may include the protection of genetic material in nerve and glial cells by stimulating the expression and efficiency of BER pathway enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226655PMC
http://dx.doi.org/10.1038/s41598-024-66094-xDOI Listing

Publication Analysis

Top Keywords

kynurenic acid
8
base excision
8
excision repair
8
repair pathway
8
specific areas
8
areas sheep
8
sheep brain
8
brain
5
acid enzymatic
4
enzymatic activity
4

Similar Publications

Temporal and Spatial Metabolic Shifts Revealing the Transition from Ulcerative Colitis to Colitis-Associated Colorectal Cancer.

Adv Sci (Weinh)

January 2025

Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China.

Patients with ulcerative colitis (UC) have a higher risk of developing colorectal cancer (CRC), however, the metabolic shifts during the UC-to-CRC transition remain elusive. In this study, an AOM-DSS-induced three-stage colitis-associated colorectal cancer (CAC) model is constructed and targeted metabolomics analysis and pathway enrichment are performed, uncovering the metabolic changes in this transition. Spatial metabolic trajectories in the "normal-to-normal adjacent tissue (NAT)-to-tumor" transition, and temporal metabolic trajectories in the "colitis-to-dysplasia-to-carcinoma" transition are identified through K-means clustering of 74 spatially and 77 temporally differential metabolites, respectively.

View Article and Find Full Text PDF

Addiction comes in various forms and can be related to substances like cocaine, opioids, alcohol, cannabis, amphetamine, and nicotine, as well as behaviors like gambling or sex addiction. The impact of addiction places increased economic and medical burdens on society. Currently, the management of addiction is more focused on symptomatic relief rather than targeting the reinforcing mechanisms of dependence on addictive substances and behaviors.

View Article and Find Full Text PDF

Thrombin-induced kynurenine 3-monooxygenase causes variations in the kynurenine pathway, leading to neurological deficits in a murine intracerebral hemorrhage model.

J Pharmacol Sci

February 2025

Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.

The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.

View Article and Find Full Text PDF

Peripheral tryptophan-kynurenine pathway dysfunction in first-episode schizophrenia.

Sci Rep

January 2025

Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China.

The tryptophan (TRP)-kynurenine (KYN) pathway is involved in the pathogenesis of schizophrenia. This study aimed to investigate the levels of TRP-KYN metabolites in serum and urine of patients with first-episode schizophrenia (FES) and their association with clinical manifestations. This study included 38 drug-naive patients with FES and 43 healthy controls (HCs).

View Article and Find Full Text PDF

Background And Objectives: Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!