The phytohormone auxin exerts control over remarkable developmental processes in plants. It moves from cell to cell, resulting in the creation of both extracellular auxin and intracellular auxin, which are recognized by distinct auxin receptors. These two auxin signaling systems govern different auxin responses while working together to regulate plant development. In this review, we outline the latest research advancements in unraveling these auxin signaling pathways, encompassing auxin perception and signaling transductions. We emphasize the interaction between extracellular and intracellular auxin, which contributes to the intricate role of auxin in plant development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgg.2024.06.019 | DOI Listing |
Plant Cell Rep
December 2024
State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
Auxin stimulates chloroplast division by upregulating the expression of genes involved in chloroplast division and influencing the positioning of chloroplast division rings. Chloroplasts divide by binary fission, forming a ring complex at the division site. Auxin, particularly indole acetic acid (IAA), significantly influences various aspects of plant growth.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea. Electronic address:
Plant Sci
December 2024
Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China; Hainan Institute, Zhejiang University, Sanya 572025, PR China. Electronic address:
Auxin plays a pivotal role in plant growth regulation. The PIN-FORMED (PIN) proteins facilitate long-distance polar auxin transport, whereas the recently identified PIN-LIKES (PILS) proteins regulate intracellular auxin homeostasis. However, the auxin transport mechanisms in horticultural crops remain largely unexplored.
View Article and Find Full Text PDFDev Cell
December 2024
Department of Plant and Crops, Fac Bioscience Engineering, Ghent University, Ghent, Belgium. Electronic address:
Sequestration of AUXIN RESPONSE FACTOR (ARF) transcription factors in cytoplasmic condensates represents a specialized mechanism for modulating cellular auxin responsiveness. In this issue of Developmental Cell, Xuan et al. show that MULTIPLE C2-DOMAIN AND TRANSMEMBRANE REGION PROTEIN (MCTP) proteins stimulate lateral root development by antagonizing ARF7 and ARF19 condensation.
View Article and Find Full Text PDFNew Phytol
February 2025
College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!