The adsorption of heavy metals on iron oxides generally increases with pH and is almost complete at neutral to slightly alkaline pH. However, almost complete adsorption on a linear scale does not imply sufficient removal of the heavy metals in terms of their toxicity. Here, we elucidated the chemical reactions that determine the solid-liquid partitioning of Pb(II) and Cd(II) on goethite at high pH. While the removal of both heavy metals was almost complete on a linear scale above pH 7 for Pb(II) and pH 9 for Cd(II), the dissolved metal concentrations decreased on a logarithmic scale with pH, reaching minima at around pH 10 for Pb(II) and pH 10-11 for Cd(II), and then they increased with pH thereafter. The XAFS spectra of Pb(II)- or Cd(II)-adsorbed goethite prepared at pH > 11 were almost the same as those at neutral pH, suggesting that removal of the heavy metals from solution was achieved by a single adsorption reaction over the entire pH range. Based on the observed macroscopic and microscopic adsorption behaviors at high pH, a robust surface complexation model was developed to predict the solid-liquid partitioning of divalent heavy metals over the entire pH range.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142766DOI Listing

Publication Analysis

Top Keywords

heavy metals
20
solid-liquid partitioning
12
pbii cdii
12
removal heavy
12
cdii goethite
8
goethite high
8
surface complexation
8
linear scale
8
entire range
8
heavy
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!