Background And Aims: Transcriptome sequencing revealed high expression of DDR2 in oxaliplatin-resistant hepatocellular carcinoma (HCC). This study aimed to explore the role of DDR2 in oxaliplatin resistance and immune evasion in HCC.

Methods: Oxaliplatin-resistant HCC cell lines were established. The interaction between DDR2 and STAT3 was investigated, along with the mechanisms involved in DDR2/STAT3-mediated PD-L1 upregulation and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) accumulation both in vitro and in vivo.

Results: DDR2 was found to induce the phosphorylation of STAT3, leading to its nuclear translocation. Conversely, the activation of STAT3 enhanced DDR2 expression. A positive feedback loop involving DDR2/STAT3 was identified in oxaliplatin-resistant HCC, which was associated with PD-L1 upregulation and PMN-MDSCs accumulation. Knockdown of DDR2 and STAT3 sensitized oxaliplatin-resistant HCC cells to oxaliplatin and resulted in decreased PMN-MDSCs and increased CD8 T cells in the tumor microenvironment. Enzyme-linked immunosorbent array and MDSC transwell migration assays indicated that oxaliplatin-resistant HCC cells recruited PMN-MDSCs through CCL20. Dual luciferase reporter assays demonstrated that STAT3 can directly enhance the transcription of PD-L1 and CCL20. Furthermore, treatment with a PD-L1 antibody in combination with CCL20 blockade had significant antitumor effects on oxaliplatin-resistant HCC.

Conclusions: Our findings revealed a positive feedback mechanism involving DDR2 and STAT3 that mediates the immunosuppressive microenvironment and promotes oxaliplatin resistance and immune evasion via PD-L1 upregulation and PMN-MDSC recruitment. Targeting the DDR2/STAT3 pathway may be a promising therapeutic strategy to overcome immune escape and chemoresistance in HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386308PMC
http://dx.doi.org/10.1016/j.jcmgh.2024.101377DOI Listing

Publication Analysis

Top Keywords

oxaliplatin-resistant hcc
20
positive feedback
12
ddr2 stat3
12
pd-l1 upregulation
12
feedback loop
8
mediates immunosuppressive
8
immunosuppressive microenvironment
8
oxaliplatin resistance
8
resistance immune
8
immune evasion
8

Similar Publications

Background: Hepatocellular carcinoma (HCC) is a cancer with high morbidity and mortality. There are limited treatment options, particularly for chemotherapy-resistant HCC patients. Circular RNA hsa_circ_0088036 was associated with the development of bladder cancer and non-small cell lung cancer.

View Article and Find Full Text PDF

To investigate the role of LINC00894 in oxaliplatin chemoresistance of hepatocellular carcinoma (HCC) and its mechanisms. The oxaliplatin-resistant HCC cell lines were established. IC50 of oxaliplatin was calculated by CCK-8 assay.

View Article and Find Full Text PDF

The aim of this research was to investigate the impact of periplocin (PPLN) on oxaliplatin (OXA) resistance in hepatocellular carcinoma (HCC) cells and offer insights for improving clinical treatment of HCC. The IC50 value of HCC cell lines against OXA was detected by the CCK-8 assay, and an OXA-resistant HepG2 cell line (HepG2/OXA) was constructed. THP-1 cells were induced into M1 or M2 macrophages, and M2 macrophage-conditioned medium (M2-CM) was prepared.

View Article and Find Full Text PDF

Background: The emergence of drug resistance to oxaliplatin (OXA) is one of the critical obstacles in the therapy of advanced Hepatocellular Carcinoma (HCC). As an ethyl derivative of the natural compound epigallocatechin gallate (epigallocatechin-3-gallate, EGCG), Y6 was found to be able to enhance the sensitivity of HCC cells to doxorubicin. This study aimed to investigate the effect of Y6 on oxaliplatin resistance in HCC.

View Article and Find Full Text PDF

DDR2/STAT3 Positive Feedback Loop Mediates the Immunosuppressive Microenvironment by Upregulating PD-L1 and Recruiting MDSCs in Oxaliplatin-Resistant HCC.

Cell Mol Gastroenterol Hepatol

September 2024

Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China. Electronic address:

Background And Aims: Transcriptome sequencing revealed high expression of DDR2 in oxaliplatin-resistant hepatocellular carcinoma (HCC). This study aimed to explore the role of DDR2 in oxaliplatin resistance and immune evasion in HCC.

Methods: Oxaliplatin-resistant HCC cell lines were established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!