Suspended solids concentration (SSC) in a river is closely relevant to river water turbidity. Investigation of their relationship in this study is accompanied by observed turbidity and SSC values, which were obtained from the testing results of water samples and monitored conditions in streamflow. The water samples were collected from two observation stations with a broad range of sediment concentrations in the Lai Chi Wo catchment in Hong Kong, China. We classified the target rainfall events into single-peak event type and dual-peak event type for a distinguished discussion of the relationship between SSC and turbidity in this study. At a finer classification, each event is separated into defined processes for the analysis, where two main processes refer to the periods that SSC rises from a normal state to a peak state first and the followed periods that SSC recesses to ordinary status gradually. It is advised by the analysis results that the estimation of SSC through turbidity values should be based on the same rainfall types for the upstream station. However, the results show that the classification of rainfall types does not need to take downstream areas into consideration. Furthermore, current research implies that the individual established connections between SSC and turbidity value at different stages (particularly referring to the rising period and recessing period) could be applied to estimate SSC at the same station via continuous turbidity values for both this and other ungauged stations with similar topographical features in the future. Meanwhile, this research approach provides new insight exploring various behaviors of sediments at different stages during an integral rainfall event. A comparison of distinguished performances of sediment during corresponding stages in a rainfall event makes contributions to diverse relationship between SSC and turbidity in the mountainous river.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174483DOI Listing

Publication Analysis

Top Keywords

ssc turbidity
16
ssc
9
turbidity
8
suspended solids
8
solids concentration
8
lai chi
8
hong kong
8
kong china
8
water samples
8
event type
8

Similar Publications

Article Synopsis
  • Land loss in estuarine areas has worsened recently due to decreased sediment transport from the Yangtze River, especially between 2009 and 2022.
  • This study investigates how changes in erosion and deposition conditions at the Yangtze River Estuary impact the concentration of suspended sediment, aiming to inform better management strategies.
  • Findings reveal that the estuary has shifted from deposition to net erosion for the first time since 1958, with significant erosion rates and variability in suspended sediment concentration linked to human activities and environmental factors.
View Article and Find Full Text PDF

The use of low-cost sensors, with open-source code, facilitates greater spatial resolution and flexibility of environmental monitoring, thus generating more information and overcoming limitations of traditional commercial sensors. Measurement of water turbidity using submerged sensors can be problematic in that rapid biofouling requires frequent site visits to remove, clean, calibrate and replace the sensor. We therefore designed an automated system using low-cost commercially-available sensors that pumps water from the stream, samples it for turbidity and purges remaining water, leaving the turbidity sensor dry between measurements, thus greatly reducing the biofouling problem and minimizing operation costs.

View Article and Find Full Text PDF

Unravelling the impact of environmental variability on mangrove sediment carbon dynamics.

Sci Total Environ

October 2024

Department of Fisheries and Aquatic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana; Centre for Coastal Management (CCM), Africa Centre of Excellence in Coastal Resilience (ACECoR), University of Cape Coast, Cape Coast, Ghana.

Mangrove ecosystems represent low-cost climate-regulating systems through carbon storage in their sediments. However, considering the complex shifts in shallow coastal ecosystems, it is clear from just a few sets of environmental impacts on their carbon storage that there is a deficit in the information required for preserving this service. Here, we investigated the spatial and temporal variability of hydrographic factors (water temperature, pH, salinity, dissolved oxygen (DO), flow velocity, turbidity) and sediment characteristics (sedimentation rate and sediment grain size) on the intricate carbon dynamics of mangroves by examining which key variable(s) control mangrove sediment organic matter (OM).

View Article and Find Full Text PDF

Suspended solids concentration (SSC) in a river is closely relevant to river water turbidity. Investigation of their relationship in this study is accompanied by observed turbidity and SSC values, which were obtained from the testing results of water samples and monitored conditions in streamflow. The water samples were collected from two observation stations with a broad range of sediment concentrations in the Lai Chi Wo catchment in Hong Kong, China.

View Article and Find Full Text PDF

Suspended sediment concentration (SSC) in water increases temperature and turbidity, limits the photosynthesis of aquatic plants, and reduces biologically available oxygen. It is important to study SSC in the coastal waters of the Arabian Gulf. Thus, this study mapped the SSC of coastal water between Al Arish and Al Ghariyah in northern Qatar using the spectral bands of the MultiSpectral Imager (MSI) of Sentinel-2 by calculating the Normalized Difference Suspended Sediment Index and Normalized Suspended Material Index.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!