Ultrafiltration (UF) is widely used in drinking water plants, nevertheless, it still encounters challenges stemming from inevitable membrane fouling caused by natural organic matter (NOM). Herein, this work applied VUV/PS as UF membrane pretreatment and used UV/PS for comparison. VUV/PS system exhibited superior ability in removing NOM compared to UV/PS system. HO and SO played crucial roles in the degradation. [SO]ss was notably higher than [HO]ss in the systems, yet HO was of greater significance. [HO]ss and [SO]ss in the VUV/PS process were remarkably higher than those in the UV/PS process, due to the function of 185 nm photons. VUV/PS pretreatment basically recovered flux and effectively reduced fouling resistance, with better performance than UV/PS. Fouling mechanism was dominated by multiple mechanisms after UV/PS pretreatment, whereas it was transformed into pore blockage after VUV/PS pretreatment. Moreover, the UF effluent quality after VUV/PS pretreatment outperformed that of UV/PS but fell short of that without pretreatment, possibly due to the generation of abundant low MW substances under the action of HO and SO. After chlorine disinfection, UV/PS and VUV/PS pretreatments increased the DBPs production and cytotoxicity. Specifically, oxidant PS affected the membrane surface morphology and fouling behaviors, and had no obvious effect on interception performance and mechanical properties. In actual water treatment, VUV/PS and UV/PS pretreatments exhibited excellent performance in alleviating membrane fouling, improving water quality, and reducing DBPs formation and acute toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174457 | DOI Listing |
Sci Total Environ
October 2024
College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!