Floating treatment wetlands (FTW) are receiving growing interest as a phyto-technology. However, there are significant research gaps regarding the actual role of plant species and plant-microbiome interactions. In this study, the nutrient uptake of Equisetum hyemale was examined in FTW microcosms under the influence of abiotic stressors: As (3 mg/L) and Pb (3 mg/L) as well as Cl (300 and 800 mg/L) in reference to a control during a short screening experiment. High removal efficiency of nutrients in water solutions, up to 88 % for TN and 93 % for PO-P, was observed. However, PO-P removal was inhibited in the As reactor, with a maximum efficiency of only 11 %. Lead and As were removed with high efficiency, reaching 98 % and 79 % respectively. At the same time only Pb was effectively bound to root biomass, reaching up to 51 %. Limited As accumulation of 0.5 % in plant roots suggests that microbial processes play a major role in its reduction. The development and structure of microbiome in the microcosms was analysed by means of 16S rRNA gene amplicon sequencing, proving that Pb was the most influential factor in terms of selection pressure on specified bacterial groups. In the As treatment, the emergence of a Serratia subpopulation was observed, while the Cl treatment preserved a rhizobiome composition most closely resembling the control. This study indicates that E. hyemale is a suitable species for use in FTWs treating Pb polluted water that at the same time is capable to withstand periodic increases in salinity. E. hyemale exhibits low As binding in biomass; however, extended exposure might amplify this effect because of the slow-acting, but beneficial, mechanism of As uptake by roots and shoots. Microbiome analysis complements insights into mechanisms of FTW performance and impact of stress factors on bacterial structure and functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174468DOI Listing

Publication Analysis

Top Keywords

abiotic stressors
8
floating treatment
8
equisetum hyemale
8
impact abiotic
4
stressors nutrient
4
nutrient removal
4
removal rhizomicrobiome
4
rhizomicrobiome composition
4
composition floating
4
treatment
4

Similar Publications

New strategies to advance plant transformation.

Curr Opin Biotechnol

December 2024

HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA; Center for Advanced Bioenergy and Bioproducts Innovation, 1206 W. Gregory Drive (IGB), Urbana, IL 61801, USA. Electronic address:

Plants are an important source of food, energy, and bioproducts. Advances in genetics, genomics-assisted breeding, and biotechnology have facilitated the combining of desirable traits into elite cultivars. To ensure sustainable crop production in the face of climate challenges and population growth, it is essential to develop and implement techniques that increase crop yield and resilience in environments facing water scarcity, nutrient deficiencies, and other abiotic and biotic stressors.

View Article and Find Full Text PDF

During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in the light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AO have often been advocated as suitable proxies for stress tolerance, as well as potential targets for improving tolerance traits.

View Article and Find Full Text PDF

Late Embryogenesis Abundant (LEA) proteins are extensively distributed among higher plants and are crucial for regulating growth, development, and abiotic stress resistance. However, comprehensive data regarding the LEA gene family in Ipomoea species remains limited. In this study, we conducted a genome-wide comparative analysis across seven Ipomoea species, including sweet potato (I.

View Article and Find Full Text PDF

Abiotic stress-induced changes in Tetrastigma hemsleyanum: insights from secondary metabolite biosynthesis and enhancement of plant defense mechanisms.

BMC Plant Biol

December 2024

Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

Tetrastigma hemsleyanum, a traditional Chinese medicinal plant with anti-inflammatory, anti-cancer, and anti-tumor properties, faces increasing abiotic stress due to climate change, agricultural chemicals, and industrialization. This study investigated how three abiotic stress factors influence antioxidant enzyme activity, MDA levels, DPPH free radical scavenging capacity, chlorophyll, carotenoids, active compounds, and gene expression in different T. hemsleyanum strains.

View Article and Find Full Text PDF

Nanomaterials impact in phytohormone signaling networks of plants-A critical review.

Plant Sci

December 2024

Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India. Electronic address:

Nanotechnology offers a transformative approach to augment plant growth and crop productivity under abiotic and biotic stress conditions. Nanomaterials interact with key phytohormones, triggering the synthesis of stress-associated metabolites, activating antioxidant defense mechanisms, and modulating gene expression networks that regulate diverse physiological, biochemical, and molecular processes within plant systems. This review critically examines the impact of nanoparticles on both conventional and genetically modified crops, focusing on their role in nutrient delivery systems and the modulation of plant cellular machinery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!