Afforestation is a crucial pathway for ecological restoration and has the potential to modify soil microbial community, thereby impacting the cycling and accumulation of carbon in soil across diverse patterns. However, the overall patterns of how afforestation impacts below-ground carbon cycling processes remain uncertain. In this comprehensive meta-analysis, we systematically evaluated 7045 observations from 210 studies worldwide to evaluate the influence of afforestation on microbial communities, enzyme activities, microbial functions, and associated physicochemical properties of soils. Afforestation increases microbial biomass, carbon and nitrogen hydrolase activities, and microbial respiration, but not carbon oxidase activity and nitrogen decomposition rate. Conversely, afforestation leads to a reduction in the metabolic quotient, with significant alteration of bacterial and fungal community structures and positive effects on the fungi: bacteria ratio rather than alpha and beta diversity metrics. We found a total 77 % increase in soil organic carbon (SOC) content after afforestation, which varied depending on initial SOC content before afforestation, afforestation stand age, and aridity index of afforestation sites. The modified SOC is associated with bacterial community composition along with intracellular metabolic quotient and extracellular carbon degrading enzyme activity playing a role. These findings provide insights into the pathways through which afforestation affects carbon cycling via microorganisms, thus improving our knowledge of soil carbon reservoir's responses to afforestation under global climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174448 | DOI Listing |
J Environ Manage
January 2025
School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China; Qilaotu Mountain National Observation and Research Station of Chinese Forest Ecosystem, Chifeng, 024400, China.
Climate change has profound implications for the distribution of suitable habitats for woody species. In this study, we assessed the optimal distribution thresholds for twelve woody species on the Loess Plateau using the Maximum Entropy (MaxEnt) model, incorporating sample points of tree species alongside relevant environmental variables. We analyzed the sustainability of potentially suitable zones and proposed a framework for selecting a regulatory model to establish the most suitable creation zones in response to future climate change.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Range and Watershed Management, Faculty of Agriculture, Ilam University, Ilam, Iran.
Soil seed bank (SSB) is valuable reserves of seeds hidden in the soil and are especially important for the preservation and establishment of vegetation under adverse environmental conditions. However, there is a lack of knowledge on the effects of restoration measures on SSB, especially in arid ecosystems. Here, we assess the impacts of oil mulching (1 and 3 years after mulching) and plantations (15-year-old) on the diversity and composition of SSB and aboveground vegetation (AGV) in comparison with those in non-restored areas (i.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, L.
View Article and Find Full Text PDFPhysiol Plant
January 2025
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China.
Populus tree species are commonly used for creating shelter forests in vast areas of northern China, at least partially due to their fast growth. However, they are facing severe problems of decline and mortality caused by drought. In contrast, tree species native to water-limited environments usually have slow growth and are currently not commonly used in afforestation, while these species are gaining more attention in forestry for their greater resilience to drought.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China.
Globally, forest decline and tree mortality are rising due to climate change. As one of the important afforestation trees in northeast China, var. is suffering from forest decline and the accompanying pests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!