Novel strategies for the determination of plastic additives derived from agricultural plastics in soil using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS).

Sci Total Environ

Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.

Published: October 2024

AI Article Synopsis

  • Agricultural plastics, particularly mulching films, contribute significantly to the presence of micro- and nanoplastics in soil due to improper waste handling and direct soil application.
  • Plastic additives (PAs) used during the production of these materials can leach into the environment, necessitating the development of effective analytical methods to monitor their impact.
  • A comprehensive strategy utilizing ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was created to detect 16 different PAs, while also identifying contamination sources in the lab that could affect results.

Article Abstract

Certain agricultural plastics, i.e., mulching films, are generally considered as potent sources of micro- and nanoplastics (MNPs), due to their direct application on soil and waste mishandling. During the synthesis and fabrication of such agricultural plastics, it is necessary to use chemicals, the so-called plastic additives (PAs), improving the physicochemical properties of the final polymeric product. However, since PAs are loosely bound on the polymer matrix, they can potentially leach into the soil environment with unidentified effects. Clearly, to monitor the fate of PAs in the terrestrial ecosystem, it is necessary to develop accurate, sensitive and robust analytical methods. To this end, a comprehensive analytical strategy was developed for monitoring 16 PAs with diverse physicochemical properties (partition coefficient; -3 < logP<19) in soil samples using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). For this purpose, two different extraction procedures were developed, namely, a single step ultrasound-assisted extraction (UAE) using ethyl acetate or an aqueous solution of methanol and a binary extraction, combining Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) and UAE principles with n-hexane as the extractant. Interestingly, within the sample preparation investigation, we identified in-lab contamination sources of PAs, e.g., centrifuge tubes or microfilters. Such consumables are made of plastic contaminating the procedural blanks and omitting their use was necessary to acquire satisfactory analytical performance. In detail, method validation was performed for 16 compounds achieving recoveries mainly in the range 70-120 %, repeatability (expressed as relative standard deviation, RSD %) < 20 % and limits of quantification (LOQs) ranging between 0.2 and 20 ng/g dry weight (dw). Importantly, the presented strategies are added to the very limited available for PA determination in soil, a topical issue with a significant and rather understudied impact on agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174492DOI Listing

Publication Analysis

Top Keywords

agricultural plastics
12
plastic additives
8
physicochemical properties
8
novel strategies
4
strategies determination
4
determination plastic
4
additives derived
4
derived agricultural
4
plastics soil
4
soil ultrahigh-performance
4

Similar Publications

Adaptation to drought is one of the most important challenges for agriculture. The root system, and its integration with the soil, is fundamental in conferring drought tolerance. At the same time, it is extremely challenging to study.

View Article and Find Full Text PDF

How gene expression evolves to enable divergent ecological adaptation and how changes in gene expression relate to genomic architecture are pressing questions for understanding the mechanisms enabling adaptation and ecological speciation. Furthermore, how plasticity in gene expression can both contribute to and be affected by the process of ecological adaptation is crucial to understanding gene expression evolution, colonisation of novel niches and response to rapid environmental change. Here, we investigate the role of constitutive and plastic gene expression differences between host races, or host-specific ecotypes, of the peacock fly Tephritis conura, a thistle bud specialist.

View Article and Find Full Text PDF

Biomethanation is a crucial process occurring in natural and engineered systems which can reduce carbon dioxide to methane impacting the global carbon cycle. However, little is known about the effect of on-and-off gaseous provision and micronutrients on bioconversion. Here, anaerobic microbiomes underwent intermittent feeding with incremental starvations and selective metal supplementation to assess the impact of hydrogen and carbon dioxide availability on microbial physiology.

View Article and Find Full Text PDF

Microplastics (MPs) are fragments with a diameter of less than 5 mm that have been directly manufactured or formed by the degradation of plastic waste. MPs are not only prone to bioaccumulation in the environment, but they also lead to the spread of micropollutants in the environment, thereby threatening human health ecological environment. The useful detection method of MPs and understanding their abundance, characteristics and toxicity are great essential for MPs removal and control.

View Article and Find Full Text PDF

Starch-based bioplastics, due to their abundance, recyclability, and biodegradability, offer a promising alternative to conventional petrochemical-based plastics. Additives significantly influence the functionality of bioplastics. This study investigates the effects of polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC) at varying concentrations on banana starch-based bioplastic films, using glycerol as a plasticizer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!