MERS-CoV remains a persistent threat amid global events.

J Infect Public Health

King Saud Medical City, Ministry of Health & College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Kyung Hee University, Seoul, South Korea.

Published: August 2024

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jiph.2024.102487DOI Listing

Publication Analysis

Top Keywords

mers-cov remains
4
remains persistent
4
persistent threat
4
threat amid
4
amid global
4
global events
4
mers-cov
1
persistent
1
threat
1
amid
1

Similar Publications

Coronaviruses (CoV) emerge suddenly from animal reservoirs to cause novel diseases in new hosts. Discovered in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in camels in the Middle East and is continually causing local outbreaks and epidemics. While all three newly emerging human CoVs from the past 20 years (SARS-CoV, SARS-CoV-2, and MERS-CoV) cause respiratory disease, each CoV has unique host interactions that drive differential pathogeneses.

View Article and Find Full Text PDF

Background: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe respiratory illness in humans and currently lacks an approved vaccine. The Newcastle disease virus (NDV) vector is a well-established, safe, and effective platform for vaccine development. With recent advancements in stabilizing coronavirus spike proteins to enhance their antigenicity, this study aimed to determine whether modifications to the MERS-CoV spike protein could improve its presentation on NDV particles, allowing the resulting virus to be used as an inactivated vaccine.

View Article and Find Full Text PDF

Structural insights into nucleocapsid protein variability: Implications for PJ34 efficacy against SARS-CoV-2.

Virology

January 2025

Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. Electronic address:

Human coronaviruses (HCoVs) include common cold viruses such as HCoV-229E, OC43, NL63 and HKU1 as well as MERS-CoV and SARS-CoV, which cause severe respiratory disease. Recently, SARS-CoV-2 caused a COVID-19 pandemic. The nucleocapsid (N) protein of coronaviruses, which is essential for RNA binding and homodimerization, has a highly conserved structure across viruses.

View Article and Find Full Text PDF

The COVID-19 pandemic has underscored the urgent need for antiviral agents capable of targeting a broad range of coronaviruses, including emerging variants of SARS-CoV-2. While vaccines have been pivotal, the search for drugs that can prevent viral entry into host cells remains crucial, especially against evolving viral forms and other coronaviruses. In this study, we investigated natural products as a source of antiviral agents, focusing on their potential to block the spike protein's receptor-binding domain (RBD).

View Article and Find Full Text PDF

Nanobody-Based Lateral Flow Immunoassay for Rapid Antigen Detection of SARS-CoV-2 and MERS-CoV Proteins.

ACS Synth Biol

January 2025

KAUST Catalysis Center (KCC), Division of Physical Sciences & Engineering, King Abdullah University of Science and Technology, KAUST, Thuwal 23955, Kingdom of Saudi Arabia.

The COVID-19 pandemic has highlighted the critical need for pathogen detection methods that offer both low detection limits and rapid results. Despite advancements in simplifying and enhancing nucleic acid amplification techniques, immunochemical methods remain the preferred methods for mass testing. These methods eliminate the need for specialized laboratories and highly skilled personnel, making home testing feasible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!