Chemical and microlitter (ML) pollution in three Estonian coastal areas (Baltic Sea) was investigated using mussels (Mytilus trossulus). Polycyclic aromatic hydrocarbons (PAH) in mussel tissues were observed in moderate levels with high bioaccumulation factors for the more hydrophilic and low molecular weight PAH (LMW PAH), namely anthracene and fluorene. Tissue concentrations of polybrominated diphenyl ethers (PBDE) and cadmium within mussel populations exceeded the Good Environmental Status thresholds by more than 200% and 60%, respectively. Multiple contamination at the Muuga Harbour site by tributyltin, high molecular weight PAH, including the highly toxic benzo[c]fluorene and PBDE, coincided with the inhibition of acetylcholinesterase activity and a lower condition index of the mussels. The metabolization and removal of bioaccumulated LMW PAH, reflected in the dominance of oxy-PAH such as anthracene-9,10-dione, is likely associated with the increased activity of glutathione S-transferase in caged mussels. Only a few microplastic particles were observed among the ML in mussel tissues, with coloured cellulose-based microfibers being the most prevalent. The average concentration of ML in mussels was significantly higher at the harbour area than at other sites. The integrated biomarker response index values allowed for the differentiation of pollution levels across studied locations representing high, intermediate, and low pollution levels within the studied area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2024.106628DOI Listing

Publication Analysis

Top Keywords

baltic sea
8
mytilus trossulus
8
mussel tissues
8
molecular weight
8
weight pah
8
lmw pah
8
pollution levels
8
levels studied
8
pah
5
case study
4

Similar Publications

Microplastics in seawater and fish from the Baltic Sea were analyzed. The significant contribution of the study is due to extensive collection of fish and surface water samples from corresponding fishing zones. Microplastics were detected in 100 % of seawater and 61 % of fish samples.

View Article and Find Full Text PDF

Evolution of fast-growing piscivorous herring in the young Baltic Sea.

Nat Commun

December 2024

Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.

The circumstances under which species diversify to genetically distinct lineages is a fundamental question in biology. Atlantic herring (Clupea harengus) is an extremely abundant zooplanktivorous species that is subdivided into multiple ecotypes that differ regarding spawning time and genetic adaption to local environmental conditions such as temperature, salinity, and light conditions. Here we show using whole genome analysis that multiple populations of piscivorous (fish-eating) herring have evolved sympatrically after the colonization of the brackish Baltic Sea within the last 8000 years postglaciation.

View Article and Find Full Text PDF

Objective: To establish the relevance of examining the internal organs for the presence of diatom plankton after drowning in the waters of the White Sea.

Material And Methods: We studied the biological material (fragments of lungs and kidneys) from the corpses of people found in the waters of the Kemskaya Bay and Onega Bay of the White Sea and waters from different areas of the White Sea for the presence of diatoms.

Results: In all cases of drowning in the waters of the White Sea (in the area of the city of Belomorsk and the Kem skerries), marine and freshwater diatoms were found in the lungs and kidneys of the deceased in quantities sufficient to diagnose death from drowning in water.

View Article and Find Full Text PDF

Determining optimal maintenance strategies in unique maritime environments like the Baltic Sea is challenging, as it should consider various aspects, including ship characteristics and environmental conditions. This study employs the decision support tool HullMASTER (Hull MAintenance STrategies for Emission Reduction) to assess the life cycle costs of different hull maintenance scenarios for RoPax vessels in the Baltic Sea. Findings indicate that optimal hull management can save operators up to €9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!