High-throughput virtual screening of Streptomyces spp. metabolites as antiviral inhibitors against the Nipah virus matrix protein.

Comput Biol Chem

Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute, Taguig 1631, Metro Manila, Philippines; S&T Fellows Program, Department of Science and Technology, Taguig 1631, Metro Manila, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila 1000, Metro Manila, Philippines. Electronic address:

Published: October 2024

Nipah virus (NiV) remains a significant global concern due to its impact on both the agricultural industry and human health, resulting in substantial economic and health consequences. Currently, there is no cure or commercially available vaccine for the virus. Therefore, it is crucial to prioritize the discovery of new and effective treatment options to prevent its continued spread. Streptomyces spp. are rich sources of metabolites known for their bioactivity against certain diseases; however, their potential as antiviral drugs against the Nipah virus remain unexplored. In this study, 6524 Streptomyces spp. metabolites were screened through in silico methods for their inhibitory effects against the Nipah virus matrix (NiV-M) protein, which assists in virion assembly of Nipah virus. Different computer-aided tools were utilized to carry out the virtual screening process: ADMET profiling revealed 913 compounds with excellent safety and efficacy profiles, molecular docking predicted the binding poses and associated docking scores of the ligands in their respective targets, MD simulations confirmed the binding stability of the top ten highest-scoring ligands in a 100 ns all-atom simulation, PCA elucidated simulation convergence, and MMPB(GB)SA calculations estimated the binding energies of the final candidate compounds and determined the key residues crucial for complex formation. Using in silico methods, we identified six metabolites targeting the main substrate-binding site and five targeting the dimerization site that exhibited excellent stability and strong binding affinity. We recommend testing these compounds in the next stages of drug development to confirm their effectiveness as therapeutic agents against Nipah virus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2024.108133DOI Listing

Publication Analysis

Top Keywords

nipah virus
24
streptomyces spp
12
virtual screening
8
spp metabolites
8
virus matrix
8
silico methods
8
virus
7
nipah
6
high-throughput virtual
4
screening streptomyces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!