Texture-modified, multi-nutrient composite foods are essential in clinical treatment for dysphagia individuals. Herein, fibrous whey protein-stabilized emulsion and different crystalline starches (wheat, corn, rice, potato, sweet potato, cassava, mung bean and pea) were used to structure composite emulsion gels (CEGs). These CEGs then underwent 3D printing to explore the feasibility of developing a dysphagia diet. The network of molded CEGs was mainly maintained by hydrophobic interactions and hydrogen bonds. Rice and cassava starches were better suited for structuring soft-textured CEGs. Compared with molded CEGs, 3D printing decreased hydrogen bonds and the compactness of the nano-aggregate structure within the gel system, forming a looser gel network and softening the CEGs. Interestingly, these effects were more pronounced for the CEGs with high initial hardness. This study provided new strategy to fabricate CEGs as dysphagia diet using fibrous whey protein and starch, and to design texture-modified foods for patients using 3D printing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.140302DOI Listing

Publication Analysis

Top Keywords

fibrous whey
12
composite emulsion
8
emulsion gels
8
cegs
8
dysphagia diet
8
molded cegs
8
hydrogen bonds
8
texture characterization
4
characterization printed
4
printed fibrous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!