Lumbar spinal stenosis (LSS) can cause a range of cauda equina symptoms, including lower back and leg pain, numbness, and intermittent claudication. This disease affects approximately 103 million people worldwide, particularly the elderly, and can seriously compromise their health and well-being. Ligamentum flavum hypertrophy (LFH) is one of the main contributing factors to this disease. Surgical treatment is currently recommended for LSS caused by LFH. For patients who do not meet the criteria for surgery, symptom relief can be achieved by using oral nonsteroidal anti-inflammatory drugs (NSAIDs) and epidural steroid injections. Exercise therapy and needle knife can also help to reduce the effects of mechanical stress. However, the effectiveness of these methods varies, and targeting the delay in LF hypertrophy is challenging. Therefore, further research and development of new drugs is necessary to address this issue. Several new drugs, including cyclopamine and N-acetyl-l-cysteine, are currently undergoing testing and may serve as new treatments for LSS caused by LFH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224896PMC
http://dx.doi.org/10.1097/MD.0000000000038782DOI Listing

Publication Analysis

Top Keywords

lumbar spinal
8
spinal stenosis
8
ligamentum flavum
8
flavum hypertrophy
8
lss caused
8
caused lfh
8
nonsurgical therapy
4
therapy lumbar
4
stenosis caused
4
caused ligamentum
4

Similar Publications

Purpose Of The Study: The annual number of spinal fusion procedures has been increasing and is well documented worldwide. The O-arm is slowly becoming the standard for transpedicular screw insertion. The accuracy and safety of this method have been confirmed by many studies.

View Article and Find Full Text PDF

Background: There are differences in the extent of excision of articular processes, spinal processes and posterior ligamentum complexes (PLC) for posterior approach lumbar interbody fusion. Given that the biomechanical significance of these structures has been verified and that deterioration of the biomechanical environment is the main trigger for complications in both fused and adjacent motion segments, changes in decompression ranges may affect the potential risk of adjacent segmental disease (ASD) biomechanically; however, this topic has yet to be identified.

Methods: Posterior lumbar interbody fusion (PLIF) with different decompression strategies was simulated in a well-validated lumbosacral model.

View Article and Find Full Text PDF

Background: Lumbar facet joint diseases can often lead to reduced work efficiency and increased medical costs. As a primary imaging tool in orthopedics, X-rays offer numerous advantages. However, there is no consensus on the classification of lumbar facet joints based on X-ray imaging.

View Article and Find Full Text PDF

The influence of sintering of osteoporotic vertebral fractures on the sagittal lumbar profile and degenerative changes.

J Orthop Surg Res

January 2025

Department of Orthopaedic and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.

Background: Osteoporosis, a skeletal disorder affecting nearly 20% of the global population, poses a significant health concern, with osteoporotic vertebral body fractures (VBF) representing a common clinical manifestation. The impact of osteoporotic sintering fractures in the thoracolumbar spine on the sagittal lumbar profile is incompletely understood and may lead to the onset of clinical symptoms in previously asymptomatic patients.

Methods: This retrospective single-center study analyzed data from patients presenting with osteoporotic spine fractures between 2017 and 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!