Mangroves' ability to store carbon (C) has long been recognized, but little is known about whether planted mangroves can store C as efficiently as naturally established (i.e., intact) stands and in which time frame. Through Bayesian logistic models compiled from 40 years of data and built from 684 planted mangrove stands worldwide, we found that biomass C stock culminated at 71 to 73% to that of intact stands ~20 years after planting. Furthermore, prioritizing mixed-species planting including spp. would maximize C accumulation within the biomass compared to monospecific planting. Despite a 25% increase in the first 5 years following planting, no notable change was observed in the soil C stocks thereafter, which remains at a constant value of 75% to that of intact soil C stock, suggesting that planting effectively prevents further C losses due to land use change. These results have strong implications for mangrove restoration planning and serve as a baseline for future C buildup assessments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/sciadv.adk5430 | DOI Listing |
Nat Prod Res
January 2025
Bioprocess Engineering Division, Smykon Biotech, Kanniyakumari, Tamilnadu, India.
Lectins are naturally occurring agglutinins which are produced more from plants sources compared to animal sources. The present study aims to screen the potential applications of lectin isolated from the mangrove plant, Poir. This root agglutinin of showed highest HA titre with buffalo erythrocytes.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China.
Understanding plant adaptations in extreme environments is crucial, as these adaptations often confer advantages for survival. However, a significant gap exists regarding the genetic mechanisms underlying these adaptations and their responses to human-induced rapid environmental change (HIREC). This study addresses the question of whether genetic convergence occurs among plants with similar adaptive features, specifically focusing on isobilateral leaves in mangrove species.
View Article and Find Full Text PDFSci Rep
January 2025
BESE Division, Plant Cell and Developmental Biology Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
In arid and semi-arid climates, native plants have developed unique strategies to survive challenging conditions. These adaptations often rely on molecular pathways that shape plant architecture to enhance their resilience. Date palms (Phoenix dactylifera) and mangroves (Avicennia marina) endure extreme heat and high salinity, yet the metabolic pathways underlying this resilience remain underexplored.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Center for Applied Research on the Environment and Sustainability (CARES), School of Science and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
Background: Mangroves are one of the key nature-based solutions that mitigate climate change impacts. Even though they are halophytic in nature, seedlings are vulnerable to high salinity for their establishment. This study investigated the effects of different salinities on seedling growth and mineral element composition of two dominant species ( and ).
View Article and Find Full Text PDFMicroorganisms
December 2024
Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil.
is a halophytic pantropical invasive fern growing in mangroves and swamps. Its association with arbuscular mycorrhizal fungi (AMF) has been reported in Asia. AMF and their symbiosis (AM) commonly colonise the absorption organs of terrestrial plants worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!