Postural instability is a common symptom of vestibular dysfunction that impacts a person's day-to-day activities. Vestibular rehabilitation is effective in decreasing dizziness, visual symptoms and improving postural control through several mechanisms including sensory reweighting of the vestibular, visual and somatosensory systems. As part of the sensory reweighting mechanisms, vestibular activation exercises with headshaking influence vestibular-ocular reflex (VOR). However, combining challenging vestibular and postural tasks to facilitate more effective rehabilitation outcomes is under-utilized. Understanding how and why this may work is unknown. The aim of the study was to assess sensory reweighting of postural control processing and VOR after concurrent vestibular activation and weight shift training (WST) in healthy young adults. Forty-two participants (18-35years) were randomly assigned into four groups: No training/control (CTL), a novel visual feedback WST coupled with a concurrent, rhythmic active horizontal or vertical headshake activity (HHS and VHS), or the same WST with no headshake (NHS). Training was performed for five days. All groups performed baseline- and post-assessments using the video head impulse test, sensory organization test, force platform rotations and electro-oculography. Significantly decreased horizontal eye movement variability in the HHS group compared to the other groups suggests improved gaze stabilization (p = .024). Significantly decreased horizontal VOR gain (p = .040) and somatosensory downweighting (p = .050) were found in the combined headshake groups (HHS and VHS) compared to the other two groups (NHS and CTL). The training also showed a significantly faster automatic postural response (p = .003) with improved flexibility (p = .010) in the headshake groups. The concurrent training influences oculomotor function and suggests improved gaze stabilization through vestibular recalibration due to adaptation and possibly habituation. The novel protocol could be modified into progressive functional activities that would incorporate gaze stabilization exercises. The findings may have implications for future development of vestibular rehabilitation protocols.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226066 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292200 | PLOS |
Endocrinol Diabetes Metab
January 2025
Endocrinology and Nutrition Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
Context: Retinal microperimetry (MPR) is a non-invasive method that measures retinal light sensitivity (RS) and gaze fixation stability (GFS). MPR has been described as a marker of cognitive impairment in people with Type 2 diabetes, but it has never been assessed in people with Type 1 diabetes (T1D). Our group described subclinical cognitive alterations, structural brain differences, and increased levels of light chain neurofilament (NfL) in people with T1D and impaired awareness of hypoglycaemia.
View Article and Find Full Text PDFCerebellum
December 2024
School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers.
View Article and Find Full Text PDFEar Hear
December 2024
Institut national de la santé et de la recherche médicale, U1028, Centre National de Recherche Scientifique, UMR5292, Lyon Neuroscience Research Center, Integrative Multisensory Perception and ACTion Team, Lyon, France.
Objectives: Catch-up saccades help to compensate for loss of gaze stabilization during rapid head rotation in case of vestibular deficit. While overt saccades observed after head rotation are obviously visually guided, some of these catch-up saccades occur with shorter latency while the head is still moving, anticipating the needed final eye position. These covert saccades seem to be generated based on the integration of multisensory inputs.
View Article and Find Full Text PDFOtol Neurotol
December 2024
Department of Otolaryngology, Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata.
Objective: To compare the feasibility and outcomes of vestibular rehabilitation (VR) for persistent postural-perceptual dizziness (PPPD) with those for chronic unilateral vestibular hypofunction (UVH).
Study Design: Prospective study.
Setting: Tertiary referral center.
Visual processing involves numerous neuro-ophthalmic pathways that enable humans to perceive and interact with the world. These visual pathways can negatively impact visual perception and decision-making. The Vestibulo-Ocular Reflex (VOR) is a compensatory mechanism that stabilizes gaze on a target during head movement, such as running or turning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!