A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep-KEDI: Deep learning-based zigzag generative adversarial network for encryption and decryption of medical images. | LitMetric

Background: Medical imaging techniques have improved to the point where security has become a basic requirement for all applications to ensure data security and data transmission over the internet. However, clinical images hold personal and sensitive data related to the patients and their disclosure has a negative impact on their right to privacy as well as legal ramifications for hospitals.

Objective: In this research, a novel deep learning-based key generation network (Deep-KEDI) is designed to produce the secure key used for decrypting and encrypting medical images.

Methods: Initially, medical images are pre-processed by adding the speckle noise using discrete ripplet transform before encryption and are removed after decryption for more security. In the Deep-KEDI model, the zigzag generative adversarial network (ZZ-GAN) is used as the learning network to generate the secret key.

Results: The proposed ZZ-GAN is used for secure encryption by generating three different zigzag patterns (vertical, horizontal, diagonal) of encrypted images with its key. The zigzag cipher uses an XOR operation in both encryption and decryption using the proposed ZZ-GAN. Encrypting the original image requires a secret key generated during encryption. After identification, the encrypted image is decrypted using the generated key to reverse the encryption process. Finally, speckle noise is removed from the encrypted image in order to reconstruct the original image.

Conclusion: According to the experiments, the Deep-KEDI model generates secret keys with an information entropy of 7.45 that is particularly suitable for securing medical images.

Download full-text PDF

Source
http://dx.doi.org/10.3233/THC-231927DOI Listing

Publication Analysis

Top Keywords

medical images
12
deep learning-based
8
zigzag generative
8
generative adversarial
8
adversarial network
8
encryption decryption
8
speckle noise
8
deep-kedi model
8
proposed zz-gan
8
encrypted image
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!