Background: The precise association between lncRNA H19 and ferroptosis in the context of atherosclerosis remains uncertain.
Objective: This study is to clarify the underlying process and propose novel approaches for the advancement of therapeutic interventions targeting atherosclerosis.
Methods: Assessment of ferroptosis, which entails the evaluation of cell viability using CCK-8 and the quantification of intracellular MDA, GSH, and ferrous ions. Simultaneously, the protein expression levels of assessed by western blot analysis, while the expression level of lncRNA H19 was also determined. Furthermore, HAECs that were cultured with ox-LDL were subjected to Fer-1 interference. HAECs were exposed to ox-LDL and then transfected with H19 shRNA and H19 overexpression vector pcDNA3.1. The level of ferroptosis in the cells was then measured. Then, HAECs were subjected to incubation with ox-LDL, followed by transfection with H19 shRNA and treated with Erastin to assess the levels of ferroptosis, cell viability, and inflammatory factor production. and the ability for blood vessel development.
Results: The survival rate of HAECs in the ox-LDL group was much lower. Ox-LDL resulted in an upregulation of ACSL4 expression in HAECs, while the expression of SLC7A11 and GPX4 decreased.
Conclusions: lncRNA H19 enhances ferroptosis and exacerbates arterial endothelial cell damage induced by LDL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/CH-242261 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt.
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China.
J Cancer
January 2025
Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China.
Platinum resistance is a common cause of chemotherapy failure in lung adenocarcinoma (LUAD). Competing endogenous RNAs (ceRNAs), which function by competitively binding to miRNAs, can influence drug response. However, the regulatory mechanisms of ceRNAs underlying chemoresistance in LUAD remain largely unknown.
View Article and Find Full Text PDFLife Sci
February 2025
Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC.
View Article and Find Full Text PDFCurr Oncol Rep
January 2025
Department of Molecular Oncology, Cancer Institute (WIA), Chennai, TN, India.
Purpose Of The Review: This review aims to explore the pivotal role of long non-coding RNAs (lncRNAs) as epigenetic regulators in the pathogenesis of multiple myeloma (MM). Additionally, we have portrayed the dual role of lncRNAs in the epigenetic landscape of MM pathobiology.
Recent Findings: In MM, lncRNAs are pivotal for proliferation, progression, and drug resistance by acting as miRNA sponges, regulating mRNA activity through microRNA recognition elements (MREs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!