Multivariate networks are commonly found in realworld data-driven applications. Uncovering and understanding the relations of interest in multivariate networks is not a trivial task. This paper presents a visual analytics workflow for studying multivariate networks to extract associations between different structural and semantic characteristics of the networks (e.g., what are the combinations of attributes largely relating to the density of a social network?). The workflow consists of a neuralnetwork- based learning phase to classify the data based on the chosen input and output attributes, a dimensionality reduction and optimization phase to produce a simplified set of results for examination, and finally an interpreting phase conducted by the user through an interactive visualization interface. A key part of our design is a composite variable construction step that remodels nonlinear features obtained by neural networks into linear features that are intuitive to interpret. We demonstrate the capabilities of this workflow with multiple case studies on networks derived from social media usage and also evaluate the workflow with qualitative feedback from experts.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2024.3423728DOI Listing

Publication Analysis

Top Keywords

multivariate networks
16
visual analytics
8
composite variable
8
variable construction
8
networks
7
multivariate
4
analytics multivariate
4
networks representation
4
representation learning
4
learning composite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!