Surface functionalization strategy is becoming a crucial bridge from magnetic nanoparticles (MNPs) to their broad bio-application. To realize the multiple functions of MNPs such as magnetic manipulation, target capture, and signal amplification in their use of electrochemical biosensing, co-crosslinking strategy was proposed here to construct dual-functionalized MNPs by combining ultra-sensitive redox moieties and specific biological probes. In this work, MNPs with a TEM size of 10 nm were synthesized by co-precipitation for amination and PEGylation to maintain colloid stability once dispersed in high-ionic-strength buffer (such as phosphate-buffered saline). Then, MNPs@IgG were prepared via the bis(sulfosuccinimidyl) suberate (BS3) cross-linker to conjugate these IgG onto the MNP surface, with a binding efficiency of 73%. To construct dual-functionalized MNPs, these redox probes of ferrocene-NHS (Fc) were co-crosslinked onto the MNP surface, together with IgG, by using BS3. The developed MNPs@Redox@IgG were characterized by SDS‒PAGE to identify IgG binding and by square wave voltammetry (SWV) to validate the redox signal. Additionally, the anti-CD63 antibodies were selected for the development of MNPs@anti-CD63 for use in the bio-testing of exosome sample capture. Therefore, co-crosslinking strategy paved a way to develop dual-functionalized MNPs that can be an aid of their potential utilization in diagnostic assay or electrochemical methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229446 | PMC |
http://dx.doi.org/10.1007/s00604-024-06517-8 | DOI Listing |
Int J Biol Macromol
December 2024
Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China; Key Laboratory of Lignocellulosic Material Science and Technology of Heilongjiang Province, Harbin 150040, China. Electronic address:
Mikrochim Acta
July 2024
Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
Surface functionalization strategy is becoming a crucial bridge from magnetic nanoparticles (MNPs) to their broad bio-application. To realize the multiple functions of MNPs such as magnetic manipulation, target capture, and signal amplification in their use of electrochemical biosensing, co-crosslinking strategy was proposed here to construct dual-functionalized MNPs by combining ultra-sensitive redox moieties and specific biological probes. In this work, MNPs with a TEM size of 10 nm were synthesized by co-precipitation for amination and PEGylation to maintain colloid stability once dispersed in high-ionic-strength buffer (such as phosphate-buffered saline).
View Article and Find Full Text PDFInt J Pharm
May 2024
Department of Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
Long-term inflammation, including those induced by bacterial infections, contributes to the superfluous accumulation of reactive oxygen species (ROS), further aggravating this condition, decreasing the local pH, and adversely affecting bone defect healing. Conventional drug delivery scaffold materials struggle to meet the demands of this complex and dynamic microenvironment. In this work, a smart gelatin methacryloyl (GelMA) hydrogel was synthesized for the dual delivery of proanthocyanidin and amikacin based on the unique pH and ROS responsiveness of boronate complexes.
View Article and Find Full Text PDFGels
February 2024
Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
Bioplastic films comprising both plant- and animal-derived proteins have the potential to integrate the optimal characteristics inherent to the specific domain, which offers enormous potential to develop polymer alternatives to petroleum-based plastic. Herein, we present a facile strategy to develop hybrid films comprised of both wheat gluten and wool keratin proteins for the first time, employing a ruthenium-based photocrosslinking strategy. This approach addresses the demand for sustainable materials, reducing the environmental impact by using proteins from renewable and biodegradable sources.
View Article and Find Full Text PDFActa Biomater
December 2022
National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, PR China. Electronic address:
Bioprosthetic heart valves (BHVs) have been widely used due to the revolutionary transcatheter aortic valve replacement (TAVR) techniques but suffer from a limited lifespan. Previous modification methods of BHVs mainly rely on glutaraldehyde precrosslinking and subsequent modification. In this study, we have engineered a Poly-2-Hydroxyethyl methacrylate (pHEMA) coated BHV based on co-crosslinking and co-polymerization strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!