Non B Cell-Derived Immunoglobulins in Lung Epithelial Cells and Lung Cancer.

Adv Exp Med Biol

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.

Published: July 2024

As the locus for air exchange, lung tissue is perpetually exposed to a significant quantity of foreign pathogens. Consequently, lung has developed a refined and intricate immune system. Beyond their physical and chemical barrier roles, lung epithelial cells can contribute to immune defence through the expression of Toll-like receptors (TLRs) and other pattern recognition receptors, along with the secretion of cytokines. Emerging evidence demonstrates that lung epithelial cells can generate and secrete immunoglobulins (Igs), including IgM, IgA, or IgG, thus performing antibody function. Moreover, malignantly transformed lung epithelial cells have been discovered to produce high levels of Ig, predominantly IgG, which do not fulfill the role of antibodies, but instead carries out tumour-promoting activity. Structural analysis has indicated that the biological activity of IgG produced by lung cancer cells differs from that of Igs produced by normal lung epithelial cells due to the unique glycosylation modification. Specifically, the sialylated IgG (SIA-IgG), characterised by a non-traditional N-glycosylation modification at the Asn162 site of Igγ CH1, is highly expressed in tumour stem cells. It has been demonstrated that SIA-IgG relies on this unique sialylation modification to promote tumorigenesis, metastasis, and immune evasion. Current results have proven that the Ig produced by lung epithelial cells has multifaceted biological activities, including immune defence functions under physiological conditions, while acquiring tumour-promoting activity during malignant transformation. These insights possess potential for the diagnosis and treatment of lung cancer as novel biomarkers and targets.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-981-97-0511-5_13DOI Listing

Publication Analysis

Top Keywords

lung epithelial
24
epithelial cells
24
lung cancer
12
lung
11
cells
8
immune defence
8
tumour-promoting activity
8
produced lung
8
epithelial
6
cell-derived immunoglobulins
4

Similar Publications

With the continuous advancements in modern medicine, significant progress has been made in the treatment of lung cancer. Current standard treatments, such as surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, have notably improved patient survival. However, the adverse effects associated with these therapies limit their use and impact the overall treatment process.

View Article and Find Full Text PDF

Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.

View Article and Find Full Text PDF

Background: Lung adenocarcinoma is one of the most common malignant tumors worldwide. Its complex molecular mechanisms and high tumor heterogeneity pose significant challenges for clinical treatment. The manganese ion metabolism family plays a crucial role in various biological processes, and the abnormal expression of the NUDT3 gene in multiple cancers has drawn considerable attention.

View Article and Find Full Text PDF

Population pharmacokinetics and pulmonary modeling of eravacycline and the determination of microbiological breakpoint and cutoff of PK/PD.

Antimicrob Agents Chemother

January 2025

Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China.

Eravacycline is a broad-spectrum fluorocycline currently approved for complicated intra-abdominal infections (cIAIs). In lung-infection models, it is effective against methicillin-resistant (MRSA) and tetracycline-resistant MRSA. As such, we aimed to develop a population pharmacokinetic/pharmacodynamic (PK/PD) model to evaluate eravacycline's pulmonary distribution and kinetics.

View Article and Find Full Text PDF

The Pro-Migratory and Pro-Invasive Roles of Cancer-Associated Fibroblasts Secreted IL-17A in Prostate Cancer.

J Biochem Mol Toxicol

February 2025

Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Cancer-associated fibroblasts (CAFs) are key stroma cells that play dominant roles in the migration and invasion of several types of cancer through the secretion of inflammatory cytokine IL-17A. This study aims to identify the potential role and regulatory mechanism of CAFs-secreted IL-17A in the migration and invasion of prostate cancer (PC). CAFs and normal fibroblasts (NFs) were obtained from fresh PC and its adjacent normal tissues, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!