The Gene Rearrangement and Transcriptional Regulation of Non B Cell-Derived Immunoglobulin.

Adv Exp Med Biol

Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.

Published: November 2024

Traditionally, immunoglobulin (Ig) expression has been attributed solely to B cells/plasma cells with well-documented and accepted regulatory mechanisms governing Ig expression in B cells. Ig transcription is tightly controlled by a series of transcription factors. However, increasing evidence has recently demonstrated that Ig is not only produced by B cell lineages but also by various types of non-B cells (non-B-Ig). Under physiological conditions, non-B-Ig not only exhibits antibody activity but also regulates cellular biological activities (such as promoting cell proliferation, adhesion, and cytoskeleton protein activity). In pathological conditions, non-B-Ig is implicated in the development of various diseases including tumour, kidney disease, and other immune-related disorders. The mechanisms underline Ig gene rearrangement and transcriptional regulation of Ig genes in non-B cells are not fully understood. However, existing evidence suggests that these mechanisms in non-B cells differ from those in B cells. For instance, non-B-Ig gene rearrangement occurs in an RAG-independent manner; and Oct-1 and Oct-4, rather than Oct-2, are required for the transcriptional regulation of non-B derived Igs. In this chapter, we will describe and compare the mechanisms of gene rearrangement and expression regulation between B-Ig and non-B-Ig.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-981-97-0511-5_4DOI Listing

Publication Analysis

Top Keywords

gene rearrangement
16
transcriptional regulation
12
non-b cells
12
rearrangement transcriptional
8
conditions non-b-ig
8
cells
6
non-b-ig
5
gene
4
regulation
4
regulation cell-derived
4

Similar Publications

Using next-generation sequencing data, the complete mitogenomes of six species from the genus were assembled. This study explores the mitochondrial genomes of species, among them the five species from the complex, comparing them with each other and with other species from Dolichoderinae subfamily to understand their evolutionary relationships and evolution. mitochondrial genomes contain the typical set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and the A + T-rich control region.

View Article and Find Full Text PDF

Characterization of the Mitochondrial Genome of (Astacidea: Cambaridae) and Its Phylogenetic Implications.

Genes (Basel)

December 2024

Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.

Background: is an endangered freshwater crayfish in China, belonging to the genus Cambaroides, that can act as a complementary host for paragonimus. The objective of this study was to examine the complete mitochondrial genome characteristics and their evolutionary relationships within the Astacidea.

Methods: The analysis of gene rearrangements and evolutionary relationships was conducted through the sequencing of the mitochondrial genome of .

View Article and Find Full Text PDF

rearrangements are major genetic entities in the classification of acute myeloid leukemias (AMLs), but their diverse and frequently cryptic nature makes their detection and characterization challenging. Karyotypic anomalies at the locus and/or abnormal Fluorescence in situ hybridization (FISH) results strongly indicate a fusion, but the identification of the translocation partner gene often requires further investigation. partial tandem duplications (PTDs), on the other hand, are undetectable by standard cytogenetics methods.

View Article and Find Full Text PDF

Within Polynoidae, a diverse aphroditiform family, the subfamily Macellicephalinae comprises anchialine cave-dwelling and deep-sea scaleworms. In this study, Lepidonotopodinae is synonymized with Macellicephalinae, and the tribe Lepidonotopodini is applied to a well-supported clade inhabiting deep-sea chemosynthetic-based ecosystems. Newly sequenced "genome skimming" data for 30 deep-sea polynoids and the comparatively shallow living is used to bioinformatically assemble their mitogenomes.

View Article and Find Full Text PDF

Assembly and comparative analysis of the complete mitogenome of var. , an exceptional berry plant possessing sweet leaves.

Front Plant Sci

December 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, China.

var. is a special berry plant of in the Rosaceae family. Its leaves contain high-sweetness, low-calorie, and non-toxic sweet ingredients, known as rubusoside.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!