We implemented isosteric replacement of sulfur to selenium in a novel thiosemicarbazone (PPTP4c4mT) to create a selenosemicarbazone (PPTP4c4mSe) that demonstrates potentiated anticancer efficacy and selectivity. Their design specifically incorporated cyclohexyl and styryl moieties to sterically inhibit the approach of their Fe(III) complexes to the oxy-myoglobin heme plane. Importantly, in contrast to the Fe(III) complexes of the clinically trialed thiosemicarbazones Triapine, COTI-2, and DpC, the Fe(III) complexes of PPTP4c4mT and PPTP4c4mSe did not induce detrimental oxy-myoglobin oxidation. Furthermore, PPTP4c4mSe demonstrated more potent antiproliferative activity than the homologous thiosemicarbazone, PPTP4c4mT, with their selectivity being superior or similar, respectively, to the clinically trialed thiosemicarbazone, COTI-2. An advantageous property of the selenosemicarbazone Zn(II) complexes relative to their thiosemicarbazone analogues was their greater transmetalation to Cu(II) complexes in lysosomes. This latter effect probably promoted their antiproliferative activity. Both ligands down-regulated multiple key receptors that display inter-receptor cooperation that leads to aggressive and resistant breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.4c00884DOI Listing

Publication Analysis

Top Keywords

feiii complexes
12
isosteric replacement
8
replacement sulfur
8
sulfur selenium
8
anticancer efficacy
8
thiosemicarbazone pptp4c4mt
8
clinically trialed
8
antiproliferative activity
8
thiosemicarbazone
5
complexes
5

Similar Publications

Targeting iron metabolism has emerged as a novel therapeutic strategy for the treatment of cancer. As such, iron chelator drugs are repurposed or specifically designed as anticancer agents. Two important chelators, deferasirox (Def) and triapine (Trp), attack the intracellular supply of iron (Fe) and inhibit Fe-dependent pathways responsible for cellular proliferation and metastasis.

View Article and Find Full Text PDF

The synthesis and characterization of novel compounds (5-8) as mimetics of [FeFe]-hydrogenase, combining two distinct systems capable of participating in hydrogen evolution reactions (HER): the [(μ-adt)Fe2(CO)6] fragment and M-salen complexes (salen = N,N'-bis(salicylidene)ethylenediamine) (M = Zn, Ni, Fe, Mn), is reported. These complexes were synthesized in high yields via a three-step procedure from N,N'-bis(4-R-salicylidene)ethanediamine) 4 [R = Fe2(CO)6(μ-SCH2)2COCH2O)]. Structural analysis through spectroscopic, spectrometric, and computational (DFT) methods confirmed distorted tetrahedral and square-planar geometries for Zn-salen and Ni-salen complexes (5 and 6) respectively, while complexes Fe-salen 7 and Mn-salen 8 exhibit square-based pyramidal structures typical of Fe(III) and Mn(III) high-spin salen-complexes.

View Article and Find Full Text PDF

Bimetallic catalysts have gained attention as promising contenders, owing to the synergistic interaction between two distinct metal centers. In this study, we present two N-heterocyclic carbene iridium(III) pentamethylcyclopentadienyl complexes [Cp*Ir(fcpyNHC)Cl]PF6 (1) and [Cp*Ir(pyNHC)Cl]PF6 (2) where 1 includes a ferrocene moiety acting as a bimetallic complex. Using ceric ammonium nitrate as a sacrificial oxidant, both complexes were tested for water oxidation.

View Article and Find Full Text PDF

Solution equilibrium and redox properties of metal complexes with 2-formylpyridine guanylhydrazone derivatives: Effect of morpholine and piperazine substitutions.

J Inorg Biochem

December 2024

Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary. Electronic address:

Schiff bases derived from aminoguanidine are extensively investigated for their structural versatility. The tridentate 2-formylpyridine guanylhydrazones act as analogues of 2-formyl or 2-acetylpyridine thiosemicarbazones, where the thioamide unit is replaced by the guanidyl group. Six derivatives of 2-formylpyridine guanylhydrazone were synthesized and their proton dissociation and complex formation processes with Cu(II), Fe(II) and Fe(III) ions were studied using pH-potentiometry, UV-visible, NMR and electron paramagnetic resonance spectroscopic methods.

View Article and Find Full Text PDF

Use of Intramolecular Quinol Redox Couples to Facilitate the Catalytic Transformation of O and O-Derived Species.

Acc Chem Res

December 2024

Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States.

ConspectusThe redox reactivity of transition metal centers can be augmented by nearby redox-active inorganic or organic moieties. In some cases, these functional groups can even allow a metal center to participate in reactions that were previously inaccessible to both the metal center and the functional group by themselves. Our research groups have been synthesizing and characterizing coordination complexes with polydentate quinol-containing ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!