Spin-Lattice Relaxation and Spin-Phonon Coupling of s Metal Ions at the Surface.

J Phys Chem Lett

Department of Chemistry and NIS Centre of Excellence, University of Turin, via Giuria 7, 10125 Torino, Italy.

Published: July 2024

To use transition metal ions for spin-based applications, it is essential to understand fundamental contributions to electron spin relaxation in different ligand environments. For example, to serve as building blocks for a device, transition metal ion-based molecular qubits must be organized on surfaces and preserve long electron spin relaxation times, up to room temperature. Here we propose monovalent group 12 ions (Zn and Cd) as potential electronic metal qubits with an s ground state. The relaxation properties of Zn and Cd, stabilized at the interface of porous aluminosilicates, are investigated and benchmarked against vanadium (3d) and copper (3d) ions. The spin-phonon coupling has been evaluated through DFT modeling and found to be negligible for the s states, explaining the long coherence time, up to 2 μs, at room temperature. These so far unexplored metal qubits may represent viable candidates for room temperature quantum operations and sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c01634DOI Listing

Publication Analysis

Top Keywords

room temperature
12
spin-phonon coupling
8
metal ions
8
transition metal
8
electron spin
8
spin relaxation
8
metal qubits
8
metal
5
spin-lattice relaxation
4
relaxation spin-phonon
4

Similar Publications

Respiratory and Cardiovascular Medical Emergency Calls Related to Indoor Heat Exposure through a Case-Control Study in New York City.

J Urban Health

January 2025

Department of Geography, Florida State University, Bellamy Building, Room 323, 113 Collegiate Loop, PO Box 3062190, Tallahassee, FL, 32306-2190, USA.

Understanding when and where heat adversely influences health outcomes is critical for targeting interventions and adaptations. However, few studies have analyzed the role of indoor heat exposures on acute health outcomes. To address this research gap, the study partnered with the New York City Fire Department Emergency Medical Services.

View Article and Find Full Text PDF

Adaptive Phase Change Microcapsules for Efficient Sustainable Cooling.

ACS Appl Mater Interfaces

January 2025

School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.

Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) with excellent ionic conductivity and a wide electrochemical stability window are critical for high-energy lithium metal batteries (LMBs). However, the widespread application of polymer electrolytes is severely limited by inadequate room-temperature ionic conductivity, sluggish interfacial charge transport, and uncontrolled reactions at the electrode/electrolyte interface. Herein, we present a uniform polymerized 1,3-dioxolane (PDOL) composite solid polymer electrolyte (PDOL-S/F-nano LiF CSE) that satisfies these requirements through the in situ catalytic polymerization effect of nano LiF on the polymerization of 1,3-dioxolane-based electrolytes.

View Article and Find Full Text PDF

The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.

View Article and Find Full Text PDF

Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!