Nitric oxide (NO) and electromagnetic fields (EMF) have been extensively studied for their roles in neurobiology, particularly in regulating cerebral functions and synaptic plasticity. This study investigates the impact of EMFs on NO modulation and its subsequent effects on neurodevelopment, building upon prior research examining EMF exposure's consequences on Wistar albino rats. Rats were exposed perinatally to either tap water, 1 g/L of L-arginine (LA) or 0.5 g/L of N-methylarginine (NMA). Half of the rats in each group were also exposed to a 7-Hz square-wave EMF at three separate intensities (5, 50 and 500 nT) for 2-14 days following birth. Animals were allowed to develop, and their brains were harvested later in adulthood (mean age = 568.17 days, SD = 162.73). Histological analyses were used to elucidate structural changes in key brain regions. All brains were stained with Toluidine Blue O (TBO), enabling the visualization of neurons. Neuronal counts were then conducted in specific regions of interest (e.g. hippocampus, cortices, amygdala and hypothalamus). Histological analyses revealed significant alterations in neuronal density in specific brain regions, particularly in response to EMF exposure and pharmacological interventions. Notable findings include a main EMF exposure effect where increased neuronal counts were observed in the secondary somatosensory cortex under low EMF intensities (p < 0.001) and sex-specific responses in the hippocampus, where a significant increase in neuronal counts was observed in the left CA3 region in female rats exposed to EMF compared to unexposed females (t(18) = 2.371, p = 0.029). Additionally, a significant increase in neuronal counts in the right entorhinal cortex was seen in male rats exposed to EMF compared to unexposed males (t(18) = 2.216, p = 0.040). These findings emphasize the complex interaction among sex, EMF exposure and pharmacological agents on neuronal dynamics across brain regions, highlighting the need for further research to identify underlying mechanisms and potential implications for cognitive function and neurological health in clinical and environmental contexts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jdn.10361 | DOI Listing |
Clin Neurophysiol
January 2025
Institute for Research and Development on Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina; Center for Rehabilitation Engineering and Neuromuscular and Sensory Research (CIRINS), National University of Entre Ríos (UNER), Oro Verde, Argentina. Electronic address:
Objective: To describe the cortical evoked potentials in response to radiofrequency stimulation (RFEPs) in human volunteers.
Methods: Seventeen healthy volunteers participated in an experimental session in which radiofrequency (RF) and electrical (ES) stimulation were applied to the dorsum of the hands and feet. EEG was recorded to evaluate evoked responses for each stimulus modality and stimulation site.
Sensors (Basel)
January 2025
Department of Electrical Engineering, Southeast University, Nanjing 210096, China.
The electromagnetic characteristics of a single-phase permanent magnet linear oscillation actuator are analyzed by the finite element method. Firstly, the basic structure and operation principle of the linear oscillation actuator are introduced. The internal stator slot and arc tooth are used to reduce the detent force.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Artificial Intelligence, Hanyang University, Seoul 04763, Republic of Korea.
Electromagnetic devices are a continuous driving force in cutting-edge research and technology, finding applications in diverse fields such as optics [...
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China.
Soft wireless passive sensors have been applied in biological, engineering, and other fields due to their advantages in powerless supply and remote data transmission. External information is obtained by soft wireless passive sensors via the external coils based on electromagnetic induction. The purpose of this review paper is to outline the biological applications of soft wireless passive chipless sensors and provide a classification of wireless passive sensors and an overall explanation of the main work.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!