Theory, computation, and experiment have given strong evidence that charge carriers in organic molecular crystals form partially delocalized quantum objects that diffuse very efficiently via a mechanism termed transient delocalization. It is currently unclear how prevalent this mechanism is for exciton transport. Here we carry out simulation of singlet Frenkel excitons (FE) in a molecular organic semiconductor that belongs to the class of nonfullerene acceptors, O-IDTBR, using the recently introduced FE surface hopping nonadiabatic molecular dynamics method. We find that FE are, on average, localized on a single molecule in the crystal due to sizable reorganization energy and moderate excitonic couplings. Yet, our simulations suggest that the diffusion mechanism is more complex than simple local hopping; in addition to hopping, we observe frequent transient delocalization events where the exciton wave function expands over 10 or more molecules for a short period of time in response to thermal excitations within the excitonic band, followed by de-excitation and contraction onto a single molecule. The transient delocalization events lead to an increase in the diffusion constant by a factor of 3-4, depending on the crystallographic direction as compared to the situation where only local hopping events are considered. Intriguingly, O-IDTBR appears to be a moderately anisotropic 3D "conductor" for excitons but a highly anisotropic 2D conductor for electrons. Taken together with previous simulation results, two trends seem to emerge for molecular organic crystals: excitons tend to be more localized and slower than charge carriers due to higher internal reorganization energy, while exciton transport tends to be more isotropic than charge transport due to the weaker distance dependence of excitonic versus electronic coupling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270823 | PMC |
http://dx.doi.org/10.1021/acs.jctc.4c00605 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Huaqiao University College of Materials Science and Engineering, No.668 Jimei Avenue, Xiamen, Fujian, 361021, Xiamen, CHINA.
The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, China.
The further success of OLED beyond conventional low-luminance display applications has been hampered by the low power efficiency (PE) at high luminance. Here, we demonstrate the strategic implementation of an exceptionally high-PE, high-luminance OLED using a phosphor-assisted thermally-activated-delayed-fluorescence (TADF)-sensitized narrowband emission. On the basis of a TADF sensitizing-host possessing a fast reverse intersystem crossing, an anti-aggregation-caused-quenching character and a good bipolar charge-transporting ability, this design achieves not only a 100% exciton radiative consumption with decay times mainly in the sub-microsecond regime to mitigate exciton annihilations for nearly roll-off-free external quantum efficiency, but also narrowband emission with both small energetic loss during energy transfer and resistive loss with increasing luminance.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.
Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.
View Article and Find Full Text PDFAdv Mater
December 2024
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Highly efficient nonfullerene acceptors (NFAs) for organic solar cells (OSCs) with low energy loss (E) and favorable morphology are critical for breaking the efficiency bottleneck and achieving commercial applications of OSCs. In this work, quinoxaline-based NFAs are designed and synthesized using a synergistic isomerization and bromination approach. The π-expanded quinoxaline-fused core exhibits different bromination sites for isomeric NFAs, namely AQx-21 and AQx-22.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, USA.
Tightly bound electron-hole pairs (excitons) hosted in atomically-thin semiconductors have emerged as prospective elements in optoelectronic devices for ultrafast and secured information transfer. The controlled exciton transport in such excitonic devices requires manipulating potential energy gradient of charge-neutral excitons, while electrical gating or nanoscale straining have shown limited efficiency of exciton transport at room temperature. Here, we report strain gradient induced exciton transport in monolayer tungsten diselenide (WSe) across microns at room temperature via steady-state pump-probe measurement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!