Nuclear actin-based movements support DNA double-strand break (DSB) repair. However, molecular determinants that promote filamentous actin (F-actin) formation on the damaged chromatin remain undefined. Here we describe the DYRK1A kinase as a nuclear activity that promotes local F-actin assembly to support DSB mobility and repair, accomplished in part by its targeting of actin nucleator spire homolog 1 (Spir1). Indeed, perturbing DYRK1A-dependent phosphorylation of S482 mis-regulated Spir1 accumulation at damaged-modified chromatin, and led to compromised DSB-associated actin polymerization and attenuated DNA repair. Our findings uncover a role of the DYRK1A-Spir1 axis in nuclear actin dynamics during early DSB responses, and highlight the intricate details of nuclear cytoskeletal network in DSB repair and genome stability maintenance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347173PMC
http://dx.doi.org/10.1093/nar/gkae574DOI Listing

Publication Analysis

Top Keywords

f-actin assembly
8
damaged chromatin
8
dsb repair
8
nuclear
5
nuclear f-actin
4
assembly damaged
4
chromatin regulated
4
regulated dyrk1a
4
dyrk1a spir1
4
spir1 phosphorylation
4

Similar Publications

Density-dependent flow generation in active cytoskeletal fluids.

Sci Rep

December 2024

Department of Chemical Engineering, Kyoto University, Nishi-kyoku, Kyoto, 615-8510, Japan.

The actomyosin cytoskeleton, a protein assembly comprising actin fibers and the myosin molecular motor, drives various cellular dynamics through contractile force generation at high densities. However, the relationship between the density dependence of the actomyosin cytoskeleton and force-controlled ordered structure remains poorly understood. In this study, we measured contraction-driven flow generation by varying the concentration of cell extracts containing the actomyosin cytoskeleton and associated nucleation factors.

View Article and Find Full Text PDF

These protocols describe a detailed method to determine the DNA damage and F-actin and microtubule defects of metaphase II oocytes caused by hexavalent chromium, Cr(VI), an endocrine disrupting chemical (EDC). The protocol provides systematic steps to determine protein expression encoded by pluripotency proteins such as Oct4, Nanog, and Cdx2 during early embryonic development. Occupational or environmental exposure to EDCs has significantly increased infertility in both men and women.

View Article and Find Full Text PDF

The transmission of cytoskeletal forces to the extracellular matrix through focal adhesion complexes is essential for a multitude of biological processes, such as cell migration, cell differentiation, tissue development, and cancer progression, among others. During migration, focal adhesions arrest the actin retrograde flow towards the cell interior, allowing the cell front to move forward. Here, we address a puzzling observation of the existence of two distinct phenomena: a biphasic vs a monotonic relationship of the retrograde flow and cell traction force with substrate rigidity.

View Article and Find Full Text PDF

Model supports asymmetric regulation across the intercellular junction for collective cell polarization.

PLoS Comput Biol

December 2024

Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America.

Symmetry breaking, which is ubiquitous in biological cells, functionally enables directed cell movement and organized embryogenesis. Prior to movement, cells break symmetry to form a well-defined cell front and rear in a process called polarization. In developing and regenerating tissues, collective cell movement requires the coordination of the polarity of the migration machineries of neighboring cells.

View Article and Find Full Text PDF

Cancer spheroids are spherical, three-dimensional (3D), in vitro assemblies of cancer cells, which are gaining importance as a useful model in cancer behavior studies. Designed to simulate key features of the in vivo tumor microenvironment, spheroids offer reliable insights for drug screening and testing applications. We observed contrasting phenotypes in 3D cervical cancer (CC) cultures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!