(PPR), a disease of socioeconomic importance has been a serious threat to small ruminants. The causative agent of this disease is PPR virus (PPRV) which belongs to the genus . Hemagglutinin (H) is a PPRV coded transmembrane protein embedded in the viral envelope and plays a vital role in mediating the entry of virion particle into the cell. The infected host mounts an effective humoral response against H protein which is important for host to overcome the infection. In the present study, we have investigated structural, physiological and functional properties of hemagglutinin protein using various computational tools. The sequence analysis and structure prediction analysis show that hemagglutinin protein comprises of beta sheets as the predominant secondary structure, and may lack neuraminidase activity. PPRV-H consists of several important domains and motifs that form an essential scaffold which impart various critical roles to the protein. Comparative modeling predicted the protein to exist as a homo-tetramer that binds to its cognate cellular receptors. Certain amino acid substitutions identified by multiple sequence alignment were found to alter the predicted structure of the protein. PPRV-H through its predicted interaction with TLR-2 molecule may drive the expression of CD150 which could further propagate the virus into the host. Together, our study provides new insights into PPRV-H protein structure and its predicted functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222573 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1427606 | DOI Listing |
Vaccines (Basel)
December 2024
Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA.
Standard-of-care influenza vaccines contain antigens that are typically derived from components of wild type (WT) influenza viruses. Often, these antigens elicit strain-specific immune responses and are susceptible to mismatch in seasons where antigenic drift is prevalent. Thanks to advances in viral surveillance and sequencing, influenza vaccine antigens can now be optimized using computationally derived methodologies and algorithms to enhance their immunogenicity.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
FSBSI 'Institute of Experimental Medicine', 197022 Saint Petersburg, Russia.
Background/objectives: Humoral immunity directed against neuraminidase (NA) of the influenza virus may soften the severity of infection caused by new antigenic variants of the influenza viruses. Evaluation of NA-inhibiting (NI) antibodies in combination with antibodies to hemagglutinin (HA) may enhance research on the antibody response to influenza vaccines.
Methods: The study examined 64 pairs of serum samples from patients vaccinated with seasonal inactivated trivalent influenza vaccines (IIVs) in 2018 according to the formula recommended by the World Health Organization (WHO) for the 2018-2019 flu season.
Int J Mol Sci
December 2024
Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland.
Prolactin induced-protein (PIP) has been found to be rich in immunomodulatory epitopes, including -acetyllactosamine (LacNAc) and ,-diacetyllactosamine (LacdiNAc) residues, which may constitute ligands for galecin-3 (Gal-3). In the current study, we aimed to investigate the reactivity of galactose- and -acetylgalactosamine-specific lectins with human seminal plasma PIP. Subsequently, we examined the direct interaction between seminal plasma PIP and galectin-3, and next analyzed whether there are any differences in the interaction associated with impaired semen parameters.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro 76230, Querétaro, Mexico.
Recently, we reported that a recombinant Tepary bean () lectin (rTBL-1) induces apoptosis in colon cancer cell lines and that cytotoxicity was related to differential recognition of β1-6 branched -glycans. Sequencing analysis and resolution of the rTBL-1 3D structure suggest that glycan specificity could be strongly influenced by two arginine residues, R103 and R130, located in the carbohydrate binding pocket. The aim of this work was to determine the contribution of these residues towards cytotoxic activity.
View Article and Find Full Text PDFLipid nanoparticles (LNP) are the most clinically advanced non-viral gene delivery system. While progress has been made for enhancing delivery, cell specific targeting remains a challenge. Targeting moieties such as antibodies can be chemically-conjugated to LNPs however, this approach is complex and has challenges for scaling up.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!