Multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters hold promise for efficient organic light-emitting diodes (OLEDs) and wide gamut displays. An azepine donor is introduced into the boron-nitrogen system for the first time. The highly twisted conformation of a seven-ring embedded new molecule, TAzBN, increases the intermolecular distances, suppressing self-aggregation emission quenching. Meanwhile, the azepine donor is crucial to achieve a narrow singlet-triplet gap (0.03 eV) as well as boost the reverse intersystem crossing (RISC) rate to 8.50 × 10 s. It is noteworthy that TAzBN demonstrates an impressive photoluminescence quantum yield of 94%. In addition, its nonsensitized OLED displayed a remarkable external quantum efficiency (EQE) with values peaking at 27.3%, and an EQE of 21.4% at 500 cd m. This finding shows that when TAzBN is used at a high concentration of 10 wt%, its device maintains efficiency even at higher brightness levels, highlighting TAzBN's resistance to aggregation quenching. Furthermore, TAzBN enantiomers showed circularly polarized photoluminescence characteristics with dissymmetry factors | | of up to 1.07 × 10 in doped films. The curved heptagonal geometry opens an avenue to design the MR-TADF emitters with fast spin-flip and chiroptical properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220617PMC
http://dx.doi.org/10.1039/d4sc02351jDOI Listing

Publication Analysis

Top Keywords

multiple resonance
8
resonance thermally
8
thermally activated
8
activated delayed
8
delayed fluorescence
8
mr-tadf emitters
8
azepine donor
8
elevating upconversion
4
upconversion performance
4
performance multiple
4

Similar Publications

Purpose: Undifferentiated pleomorphic sarcomas (UPSs) demonstrate therapy-induced hemosiderin deposition, granulation tissue formation, fibrosis, and calcification. We aimed to determine the treatment-assessment value of morphologic tumoral hemorrhage patterns and first- and high-order radiomic features extracted from contrast-enhanced susceptibility-weighted imaging (CE-SWI).

Materials And Methods: This retrospective institutional review board-authorized study included 33 patients with extremity UPS with magnetic resonance imaging and resection performed from February 2021 to May 2023.

View Article and Find Full Text PDF

Ergothioneine, a New Acrolein Scavenger at Elevated Temperature.

J Agric Food Chem

January 2025

Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, People's Republic of China.

Acrolein (ACR) present in vivo and in vitro can damage proteins and DNA, linking it to various chronic diseases. In this paper, ergothioneine (EGT), abundant in edible mushrooms, has been studied for its ability to trap ACR and its reaction pathway with ACR at high temperatures using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS). We synthesized the adducts (EGT-ACR-1 and EGT-ACR-2), elucidating their structure and reaction site through HRMS and nuclear magnetic resonance.

View Article and Find Full Text PDF

Creating coveted bioluminescence colors for simultaneous multi-color bioimaging.

Sci Adv

January 2025

Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.

Bioluminescence, an optical marker that does not require excitation by light, allows researchers to simultaneously observe multiple targets, each exhibiting a different color. Notably, the colors of the bioluminescent proteins must sufficiently vary to enable simultaneous detection. Here, we aimed to introduce a method that can be used to expand the color variation by tuning dual-acceptor bioluminescence resonance energy transfer.

View Article and Find Full Text PDF

Processing pathways between sensory and default mode network (DMN) regions support recognition, navigation, and memory but their organisation is not well understood. We show that functional subdivisions of visual cortex and DMN sit at opposing ends of parallel streams of information processing that support visually mediated semantic and spatial cognition, providing convergent evidence from univariate and multivariate task responses, intrinsic functional and structural connectivity. Participants learned virtual environments consisting of buildings populated with objects, drawn from either a single semantic category or multiple categories.

View Article and Find Full Text PDF

Theoretical modeling and modal analysis of multi-element coupled transducers.

J Acoust Soc Am

January 2025

National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.

Low-frequency transducers are considerably smaller than the wavelength. When multiple low-frequency transducers are closely packed, they couple with the surrounding water and form a transducer-water-transducer coupling structure called multi-element coupled transducers (MCT). This study presents a theoretical model of the MCT based on radiation and mutual radiation theory and analyzes it under multiple resonance frequencies and vibration modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!