Disruptive effects of plasticizers bisphenol A, F, and S on steroidogenesis of adrenocortical cells.

Front Endocrinol (Lausanne)

Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital of Würzburg, Würzburg, Germany.

Published: July 2024

Introduction: Endocrine disrupting chemicals (EDCs) are known to interfere with endocrine homeostasis. Their impact on the adrenal cortex and steroidogenesis has not yet been sufficiently elucidated. This applies in particular to the ubiquitously available bisphenols A (BPA), F (BPF), and S (BPS).

Methods: NCI-H295R adrenocortical cells were exposed to different concentrations (1nM-1mM) of BPA, BPF, BPS, and an equimolar mixture of them (BPmix). After 72 hours, 15 endogenous steroids were measured using LC-MS/MS. Ratios of substrate and product of CYP-regulated steps were calculated to identify most influenced steps of steroidogenesis. mRNA expression of steroidogenic enzymes was determined by real-time PCR.

Results: Cell viability remained unaffected at bisphenol concentrations lower than 250 µM. All tested bisphenols and their combination led to extensive alterations in the quantified steroid levels. The most profound fold changes (FC) in steroid concentrations after exposure to BPA (>10µM) were seen for androstenedione, e.g. a 0.37±0.11-fold decrease at 25µM (p≤0.0001) compared to vehicle-treated controls. For BPF, levels of 17-hydroxyprogesterone were significantly increased by 25µM (FC 2.57±0.49, p≤0.001) and 50µM (FC 2.65±0.61, p≤0.0001). BPS treatment led to a dose-dependent decrease of 11-deoxycorticosterone at >1µM (e.g. FC 0.24±0.14, p≤0.0001 at 10µM). However, when combining all three bisphenols, additive effects were detected: e.g. 11-deoxycortisosterone was decreased at doses >10µM (FC 0.27±0.04, p≤0.0001, at 25µM), whereas 21-deoxycortisol was increased by 2.92±0.20 (p≤0.01) at 10µM, and by 3.21±0.45 (p≤0.001) at 50µM. While every measured androgen (DHEA, DHEAS, androstenedione, testosterone, DHT) was lowered in all experiments, estradiol levels were significantly increased by BPA, BPF, BPS, and BPmix (e.g. FC 3.60±0.54, p≤0.0001 at 100µM BPF). Calculated substrate-product ratios indicated an inhibition of CYP17A1-, and CYP21A2 mediated conversions, whereas CYP11B1 and CYP19A1 showed higher activity in the presence of bisphenols. Based on these findings, most relevant mRNA expression of CYP genes were analysed. mRNA levels of StAR, CYP11B1, and CYP17A1 were significantly increased by BPF, BPS, and BPmix.

Discussion: In cell culture, bisphenols interfere with steroidogenesis at non-cytotoxic levels, leading to compound-specific patterns of significantly altered hormone levels. These results justify and call for additional in-vivo studies to evaluate effects of EDCs on adrenal gland functionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222671PMC
http://dx.doi.org/10.3389/fendo.2024.1387133DOI Listing

Publication Analysis

Top Keywords

bpa bpf
12
bpf bps
12
adrenocortical cells
8
mrna expression
8
p≤0001 50µm
8
bpf
6
levels
6
bisphenols
5
p≤00001
5
disruptive effects
4

Similar Publications

In this study, the genotoxic effects of three different bisphenols (BPAF, BPF and BPS) and their mixture were assessed in the crab Carcinus aestuarii. Crabs were exposed for 7 and 14 days to 300 ng/L of BPA analogues, alone or as a mixture (100 ng/L for each compound). After 7- and 14-day exposure, gills and hepatopancreas were sampled from crabs to evaluate damage to DNA by quantifying the levels of DNA single- and double-strand breaks.

View Article and Find Full Text PDF

Repeated measurements of urinary bisphenol A and its analogues in relation to sperm DNA damage.

J Hazard Mater

January 2025

Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China. Electronic address:

Bisphenol A (BPA), a common endocrine disrupting chemical (EDC), has shown detrimental effects on sperm quality and function in experimental models. However, epidemiological evidence is inconsistent and also there exists a notable lack of data on its analogues, such as bisphenol F (BPF) and bisphenol S (BPS). To investigate the relationships between BPA, BPF and BPS exposures and sperm DNA damage, we conducted a cross-sectional study recruiting 474 Chinese men from an infertility clinic in Wuhan, China.

View Article and Find Full Text PDF

Safer chemical alternatives to bisphenol (BP) have been a major pursuit of modern green chemistry and toxicology. Using a chemical similarity-based approach, it is difficult to identify minor structural differences that contribute to the significant changes of toxicity. Here, we used omics and computational toxicology to identify chemical features associated with BP analogue-induced embryonic toxicity, offering valuable insights to inform the design of safer chemical alternatives.

View Article and Find Full Text PDF

Comprehensive assessment of the safety of bisphenol A and its analogs based on multi-toxicity tests in vitro.

J Hazard Mater

December 2024

National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

As substitutes for bisphenol A (BPA), bisphenol analogs (BPs) have raised concerns due to their frequent environmental detection and unclear safety. Here, the cytotoxicity, endocrine disruption, neurotoxicity, aryl hydrocarbon receptor (AhR) activity, and genotoxicity of nine BPs and BPA were evaluated in three types of cell lines. Over half of the tested BPs exhibited greater cytotoxicity than BPA, with IC50 values showing a linear correlation with Log (R²=0.

View Article and Find Full Text PDF

Bisphenols can enter the body, where they have potential adverse effects on human health, via different routes such as inhalation, dermally or orally. They are known as endocrine disrupting chemicals that activate signaling pathways by mimicking the estrogen actions. In this study, we aimed to investigate effects of bisphenol A (BPA), and its analogues bisphenol F (BPF) and bisphenol S (BPS) on MCF-10A cells and their impact mechanisms on autophagy, apoptosis and reduced glutathion levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!