Diabetes mellitus (DM), is a chronic disorder characterized by impaired glucose homeostasis that results from the loss or dysfunction of pancreatic β-cells leading to type 1 diabetes (T1DM) and type 2 diabetes (T2DM), respectively. Pancreatic β-cells rely to a great degree on their endoplasmic reticulum (ER) to overcome the increased secretary need for insulin biosynthesis and secretion in response to nutrient demand to maintain glucose homeostasis in the body. As a result, β-cells are potentially under ER stress following nutrient levels rise in the circulation for a proper pro-insulin folding mediated by the unfolded protein response (UPR), underscoring the importance of this process to maintain ER homeostasis for normal β-cell function. However, excessive or prolonged increased influx of nascent proinsulin into the ER lumen can exceed the ER capacity leading to pancreatic β-cells ER stress and subsequently to β-cell dysfunction. In mammalian cells, such as β-cells, the ER stress response is primarily regulated by three canonical ER-resident transmembrane proteins: ATF6, IRE1, and PERK/PEK. Each of these proteins generates a transcription factor (ATF4, XBP1s, and ATF6, respectively), which in turn activates the transcription of ER stress-inducible genes. An increasing number of evidence suggests that unresolved or dysregulated ER stress signaling pathways play a pivotal role in β-cell failure leading to insulin secretion defect and diabetes. In this article we first highlight and summarize recent insights on the role of ER stress and its associated signaling mechanisms on β-cell function and diabetes and second how the ER stress pathways could be targeted during direct differentiation protocols for generation of hPSC-derived pancreatic β-cells to faithfully phenocopy all features of bona fide human β-cells for diabetes therapy or drug screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222326PMC
http://dx.doi.org/10.3389/fendo.2024.1386471DOI Listing

Publication Analysis

Top Keywords

pancreatic β-cells
16
β-cells stress
12
endoplasmic reticulum
8
diabetes mellitus
8
β-cells
8
β-cells diabetes
8
glucose homeostasis
8
type diabetes
8
β-cell function
8
stress
7

Similar Publications

Trazodone, dibenzoylmethane and tauroursodeoxycholic acid do not prevent motor dysfunction and neurodegeneration in Marinesco-Sjögren syndrome mice.

PLoS One

January 2025

Department of Neuroscience, Laboratory of Prion Neurobiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

There is no cure for Marinesco-Sjögren syndrome (MSS), a genetic multisystem disease linked to loss-of-function mutations in the SIL1 gene, encoding a BiP co-chaperone. Previously, we showed that the PERK kinase inhibitor GSK2606414 delays cerebellar Purkinje cell (PC) degeneration and the onset of ataxia in the woozy mouse model of MSS. However, GSK2606414 is toxic to the pancreas and does not completely rescue the woozy phenotype.

View Article and Find Full Text PDF

Background: Minimizing the duration of mechanical ventilation is one of the most important therapeutic goals during the care of preterm infants at neonatal intensive care units (NICUs). The rate of extubation failure among preterm infants is between 16% and 40% worldwide. Numerous studies have been conducted on the assessment of extubation suitability, the optimal choice of respiratory support around extubation, and the effectiveness of medical interventions.

View Article and Find Full Text PDF

Objective: The effects of sex hormones remain largely unexplored in pheochromocytomas and paragangliomas (PPGLs) and gastroenteropancreatic neuroendocrine tumors (GEP-NETs).

Methods: We evaluated the effects of estradiol, progesterone, Dehydroepiandrosterone sulfate (DHEAS), and testosterone on human patient-derived PPGL/GEP-NET primary culture cell viability (n = 38/n = 12), performed next-generation sequencing and immunohistochemical hormone receptor analysis in patient-derived PPGL tumor tissues (n = 36).

Results: In PPGLs, estradiol and progesterone (1 µm) demonstrated overall significant antitumor effects with the strongest efficacy in PPGLs with NF1 (cluster 2) pathogenic variants.

View Article and Find Full Text PDF

Acute Pancreatitis: An Update of Evidence-Based Management and Recent Trends in Treatment Strategies.

United European Gastroenterol J

January 2025

Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands.

Acute pancreatitis is a common gastrointestinal disease leading to hospitalisation. Recent advancements in its management have primarily focussed on the development of early phase medical interventions targeting inflammatory pathways, optimisation of supportive treatment (including fluid resuscitation, pain management and nutritional management), appropriate use of antibiotics, implementation of minimally invasive interventions for infected necrosis, and the necessity of follow-up for long-term complications. These advancements have significantly improved personalised management and overall outcomes of acute pancreatitis.

View Article and Find Full Text PDF

Effect and mechanism of oritavancin on hIAPP amyloid formation.

J Mater Chem B

January 2025

Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.

Amyloidosis of the human islet amyloid polypeptide (hIAPP) is closely related to the pathogenesis of type 2 diabetes (T2D) and serves as both a diagnostic hallmark and a key therapeutic target for T2D. In this study, we discovered that oritavancin (Ori), a glycopeptide antibiotic primarily prescribed for Gram-positive bacterial infections, can dose-dependently inhibit recombinant hIAPP (rhIAPP) amyloid formation. Ori specifically inhibited rhIAPP amyloid formation at the initial nucleation stage but didn't affect mature rhIAPP fibrils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!